The Weekly Volcanic Activity Report: May 8 - 14, 2019

The Weekly Volcanic Activity Report: May 8 - 14, 2019

New activity/unrest was reported for 3 volcanoes from May 8 - 14, 2019. During the same period, ongoing activity was reported for 15 volcanoes.

New activity/unrest: Asosan, Kyushu (Japan) | Sangay, Ecuador | Sinabung, Indonesia.

Ongoing activity: Agung, Bali (Indonesia) | Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Ibu, Halmahera (Indonesia)  | Karymsky, Eastern Kamchatka (Russia) | Kerinci, Indonesia | Klyuchevskoy, Central Kamchatka (Russia) | Krakatau, Indonesia | Manam, Papua New Guinea | Nevados de Chillan, Chile | Rincon de la Vieja, Costa Rica | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan).

New activity / unrest

Asosan, Kyushu (Japan)

32.884°N, 131.104°E, Elevation 1592 m

JMA reported that incandescence from Asosan’s Nakadake Crater was visible during 9-10 May. A small eruption on 9 May produced a plume that rose 900 m above the crater rim. Four small eruptions on 12 May generated plumes that rose to a maximum height of 1.4 km. A plume from an eruption on 13 May rose 200 m. Sulfur dioxide emissions were 3,600 tons per day on 10 May, and 1,700 tons per day on 13 May. The Alert Level remained at 2 (on a scale of 1-5).

Geological summary: The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations. This volcano is located within the Aso, a UNESCO Global Geopark property.

Sangay, Ecuador

2.005°S, 78.341°W, Elevation 5286 m

IG reported that two M2 seismic events, recorded at 0028 and 0116 on 10 May and located 3.5-9 km below Sangay’s S and W flanks, possibly corresponded to explosive activity. Four thermally elevated pixels were identified in satellite data at 0124. A small emission was visible drifting W.

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex. This volcano is located within the Sangay National Park, a UNESCO World Heritage property.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

PVMBG reported that an eruption at Sinabung was recorded at 2039 on 11 May. An ash plume was not visible due to weather conditions, although crater incandescence was noted. An eruption at 1233 on 12 May was recorded by the seismic network; foggy weather prevented visual confirmation. The Alert Level remained at 4 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions to 7 km on the SSE sector, 6 km in the ESE sector, and 4 km in the NNE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Ongoing activity

Agung, Bali (Indonesia)

8.343°S, 115.508°E, Elevation 2997 m

PVMBG and BNPB reported that an eruptive event at Agung was recorded by the seismic network at 2229 on 12 May, accompanied by a loud bang audible at the Agung Volcano Observatory in Rendang (about 8 km SW). Dense fog prevented height estimates of the ash plume. A photo posted along with the report showed that incandescent material was deposited on the flanks. The Alert Level remained at 3 (on a scale of 1-4) with the exclusion zone set at a 4-km radius.

Geological summary: Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported that incandescence from Minamidake crater (at Aira Caldera’s Sakurajima volcano) was occasionally visible at night during 7-13 May. Explosions on 7 and 13 May generated plumes that rose 1.6 and 2.9 km above the crater rim, respectively. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on satellite and wind model data, and notices from PVMBG, the Darwin VAAC reported that during 8-14 May ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted mainly NE, E, and SE. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 4 and 6-7 May that sent ash plumes up to 3.5 km (11,500 ft) a.s.l. A thermal anomaly over the volcano was identified on 6 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Elevation 3763 m

INSIVUMEH reported that there were 13-24 explosions per hour recorded at Fuego during 9-10 and 12-14 May, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-15 km S and SW. Explosions sometimes produced shock waves that rattled houses in areas to the S and SW. Incandescent material was ejected 200-300 m high and caused avalanches of material that occasionally traveled long distances (and reached vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), and Las Lajas (SE) ravines. Ashfall was reported in areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché (8 km SW), El Porvenir (8 km ENE), and Sangre de Cristo (8 km WSW). Lava flows were 500-600 m long on the W flank.

On 11 May steaming lahars descended the Las Lajas, Seca, Ceniza, and Mineral drainages, carrying variously-sized blocks and tree parts. Lahars on 14 May carried blocks and tree trunks down the Ceniza drainage.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Elevation 1325 m

The Darwin VAAC reported that on 8 May an ash plume from Ibu rose to 2.4 km (8,000 ft) a.s.l. and drifted ESE based on satellite data. PVMBG noted that at 1821 on 9 May an ash plume rose 600 m above the crater rim and drifted S. Seismic activity was characterized by explosions, tremor, and signals indicating rock avalanches. According to the VAAC an ash plume drifted ESE at an altitude of 1.8 (6,000 ft) a.s.l. on 10 May. A 14 May VONA stated that at 1846 an ash plume rose 800 m and drifted N. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Elevation 1513 m

KVERT reported that a thermal anomaly over Karymsky was visible in satellite images during 6-8 May. A gas-and-steam plume containing ash was also visible drifting 105 km SE and SW during 6-7 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kerinci, Indonesia

1.697°S, 101.264°E, Elevation 3800 m

PVMBG reported that at 1804 on 10 May a brown ash emission from Kerinci rose 700 m and drifted ESE. Seismic activity was characterized by continuous volcanic tremor and gas emissions. The Alert Level remained at 2 (on a scale of 1-4) with a 3-km exclusion zone.

Geological summary: Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. This volcano is located within the Tropical Rainforest Heritage of Sumatra, a UNESCO World Heritage property.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that a weak thermal anomaly over Klyuchevskoy was identified in satellite images during 6 and 8-9 May. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. This volcano is located within the Volcanoes of Kamchatka, a UNESCO World Heritage property.

Krakatau, Indonesia

6.102°S, 105.423°E, Elevation 813 m

PVMBG reported that Anak Krakatau’s seismic network detected eruptive events at 1254 and 1446 on 10 May, 0555 on 11 May, 1003 and 1220 on 12 May, and 0021 on 14 May. An observer estimated that an ash plume rose 150 m above the summit and drifted NE at 1446 on 10 May, but noted that visibility was difficult. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 2-km radius hazard zone from the crater.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927. This volcano is located within the Ujung Kulon National Park, a UNESCO World Heritage property.

Manam, Papua New Guinea

4.08°S, 145.037°E, Elevation 1807 m

The Darwin VAAC reported that on 10 May an ash plume from Manam rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted NE, based on satellite data and weather models. A sulfur dioxide plume and a thermal anomaly were also identified. The next day diffuse plumes drifted NE and E at an altitude of 2.4 (8,000 ft) a.s.l.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Nevados de Chillan, Chile

36.868°S, 71.378°W, Elevation 3180 m

ONEMI and SERNAGEOMIN reported that an explosive event at Nevados de Chillán’s Nicanor Crater was recorded at 2003 on 12 May associated with a long-period earthquake signal. The explosion partially destroyed the lava dome, ejecting incandescent material onto the N flank. The Alert Level remained at Orange, the second highest level on a four-color scale, and residents were reminded not to approach the crater within 3 km. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the communities of Pinto, Coihueco, and San Fabián.

Geological summary: The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Rincon de la Vieja, Costa Rica

10.83°N, 85.324°W, Elevation 1916 m

OVSICORI-UNA reported that an eruption at Rincón de la Vieja recorded at 0720 on 11 May produced a white gas-and-steam plume that rose 600 m above the crater rim.

Geological summary: Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater. This volcano is located within the Area de Conservación Guanacaste, a UNESCO World Heritage property.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly over Sheveluch’s lava dome was identified daily in satellite images during 3-10 May. Gas-and-steam plumes containing some ash was visible drifting 50 km SE and SW. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Elevation 796 m

JMA reported that crater incandescence at Suwanosejima’s Ontake Crater was visible at night during 3-10 May. A very small eruption on 5 May generated a plume that rose 500 m above the crater rim. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Source: GVP

Register/become a supporter

Support us AD-FREE

Your support is crucial for our survival. It makes this project fully self-sustainable and keeps us independent and focused on the content we love to create and share. 

Monthly subscription

Subscription options

Yearly subscription

Subscription options

You'll receive your ad-free account for 20x faster browsing experience, clean interface without any distractions, ability to post comments without prior editorial check, all our desktop and mobile applications (current and upcoming) ad-free and with the full set of features available, a direct line of communication and much more. See all options.

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar