·

Volcanic plume over Southern Atlantic Ocean revealed through false-color imagery

volcanic-plume-over-southern-atlantic-ocean-revealed-through-false-color-imagery

The South Sandwich Islands, in the far southern Atlantic Ocean, are often shrouded with thick cloud, making it difficult to view the region from space. Sometimes, however, the use of false-color imagery can be used to reveal events that would otherwise be obscured under cloud cover.

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite flew over the South Sandwich Islands on April 19, 2014 and acquired this false-color image of the cloudy scene.

Image credit: Jeff Schmaltz/MODIS Land Rapid Response Team, NASA GSFC

This false-color image uses a combination of non-visible (middle infrared and infrared) and visible (red) light captured in bands 7, 2, and 1, respectively, to distinguish clouds from snow and ice. Here the ice-covered islands appear bright turquoise, the clouds light turquoise and the water in the ocean appears deep black. Because the volcanic plume is a moist mixture of gas and ash, it reflects all three forms of light relatively well, so it appears nearly white.

In the north of this image, a thin plume of white rises from the volcano on Zavodovski island, the northernmost of the South Sandwich Islands and streams to the northeast. Further south, a wider white plume can be seen blowing across the Atlantic Ocean. This plume rises from the Mount Michael volcano, which is a young and frequently active stratovolcano located on Saunders Island, near the center of the South Sandwich Island chain.

The white plume from Mount Michael forms a chain of swirling eddies as it blows to the northeast. To the south, similar eddies can be seen behind three other islands. These are known as Von Kármán vortices. These vortices can form nearly anywhere that fluid flow is disturbed by an object. Because the atmosphere behaves like a fluid, when streaming air hits a blunt object, such as a mountain peak, the wind is forced around the object.

The disturbance in the flow of the wind propagates downstream in a double row of vortices that alternate their direction of rotation, much like the eddies seen behind a pier in a river as water rushes past.

Source: NASA

Featured mage credit: Jeff Schmaltz/MODIS Land Rapid Response Team, NASA GSFC

If you value what we do here, open your ad-free account and support our journalism.

Share:

Related articles

Producing content you read on this website takes a lot of time, effort, and hard work. If you value what we do here, select the level of your support and register your account.

Your support makes this project fully self-sustainable and keeps us independent and focused on the content we love to create and share.

All our supporters can browse the website without ads, allowing much faster speeds and a clean interface. Your comments will be instantly approved and you’ll have a direct line of communication with us from within your account dashboard. You can suggest new features and apps and you’ll be able to use them before they go live.

You can choose the level of your support.

Stay kind, vigilant and ready!

$5 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$50 /year

$10 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$100 /year

$25 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$200 /year

You can also support us by sending us a one-off payment using PayPal:

Leave a reply

Your email address will not be published.