The Weekly Volcanic Activity Report: January 6 - 12, 2021

The Weekly Volcanic Activity Report: January 6 - 12, 2021

New activity/unrest was reported for 7 volcanoes from January 6 - 12, 2021. During the same period, ongoing activity was reported for 12 volcanoes.

New activity/unrest: Kilauea, Hawaiian Islands (USA) | Langila, New Britain (Papua New Guinea) | Merapi, Central Java (Indonesia) | Pelee, Martinique (France) | Sarychev Peak, Matua Island (Russia) | Soufriere St. Vincent, St. Vincent | Suwanosejima, Ryukyu Islands (Japan).

Ongoing activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Ibu, Halmahera (Indonesia) | Kadovar, Papua New Guinea | Karymsky, Eastern Kamchatka (Russia) | Klyuchevskoy, Central Kamchatka (Russia) | Lewotolo, Lomblen Island (Indonesia) | Pacaya, Guatemala | Popocatepetl, Mexico | Sheveluch, Central Kamchatka (Russia) | Sinabung, Indonesia.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network.

New activity/unrest

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that lava effusion from vents on a cone on the inner NW wall of Kilauea’s Halema`uma`u Crater continued to feed a growing perched lava lake during 6-12 January. Lava flowed through a crusted channel into the lake during most of the week. A dome fountain of upwelled lava at the partially submerged inlet was 5 m tall early on 6 January. Dome fountaining had weakened early on 7 January, giving way to spattering at the top of the vent and the formation of a second cone. Dome fountaining was possibly visible again on 8 January. The lake was perched at least 1-2 m above its narrow edges, though late on 10 January the stagnant, eastern part of the lake had subsided and was 3-4 m shallower. Overall the lake had deepened just 2 m by 11 January, reaching 196 m, and the lake volume was estimated at more than 27 million cubic meters.

An island of cooler, solidified lava and the 11 smaller islands were relatively stationary in the E part of the lake. The dimensions of the largest island remained unchanged (250 m long and 135 m wide), though on 8 January the W end was 9 m above the lake’s surface and the high point was 23 m above the lake, suggesting that the island was rising. Sulfur dioxide emissions were 2,700 and 2,300 tonnes/day on 7 and 10 January, respectively.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Summit elev. 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that on 9 January a short-lived eruption at Langila produced an ash plume that rose 4.9 km (16,000 ft) a.s.l. and drifted W.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

BPPTKG reported that a new lava dome, first observed on 4 January, continued to emerge just below Merapi’s SW rim during 5-12 January. Incandescent avalanches were observed 19 times during 4-7 January with material traveling as far as 800 m down the Krasak River drainage on the SW flank. At 0802 on 7 January a block-and-ash flow traveled down the upper part of the Krasak; the total distance was not observable due to weather clouds, though the seismic data suggested it was small and was not more than 1 km in length. The event also produced a 200-m-high ash plume. Similar events were recorded that same day at 1250, 1315, and 1402. Deformation continued; electronic Distance Measurement (EDM) data continued to measure a distance shortening between points in the NW at a rate of 15 cm per day. On 7 January BNPB noted that 1,342 residents were housed in evacuation centers. The Alert Level remained at 3 (on a scale of 1-4), and the public were warned to stay 5 km away from the summit.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Pelee, Martinique (France)

14.809°N, 61.165°W, Summit elev. 1394 m

L'Observatoire Volcanologique et Sismologique de Martinique (OVSM) reported that seismicity related to volcanism has typically remained low at Pelée since 1980, when monitoring instrumentation was first installed, with a few dozen earthquakes recorded per year. Swarms were recorded in 1980, 1985-1986, 2007, and 2014, though the latter two swarms were associated with tectonic events. Volcanic seismicity appeared in April 2019 centered 4-5 km below the summit and deeper (more than 10 km below sea level). In addition, tremor-type signals were recorded during 8-9 November 2020, possibly signifying a reactivation of the hydrothermal system. The seismic data recorded since April 2019 represented an increase above baseline levels recorded during 1 January 2015 to April 2019. As a result of this activity OVSM raised the Alert Level to Yellow (the second lowest level on a four-color scale) on 4 December 2020.

Seismicity remained above background levels during 18 December 2020-1 January 2021, with at least 14 volcano-tectonic earthquakes detected with magnitudes less than or equal to 1. Scientists did not observe fumarolic activity during an overflight on 29 December 2020. The number of high-frequency, volcano-tectonic earthquakes (M 1 or less) totaled 65 during 1-8 January. A significant number (249) of long-period earthquakes in a volcanic tremor-type signal were distributed over two periods, 0000-0200 on 3 January and between 2100 on 3 January and 0200 on 4 January. Two isolated, low-frequency, long-period signals were also recorded. The data suggested ongoing perturbation of the hydrothermal system.

Geological summary: Renowned Montagne Pelée forms the northern end of the island of Martinique. Three major edifice failures since the late Pleistocene, the last about 9,000 years ago, have left large open calderas breached to the SW inside which the modern volcano has been constructed. More than 20 major eruptions have occurred here during the past 5,000 years. Extensive pyroclastic-flow deposits, incised by steep-walled ravines, mantle the slopes of the volcano. The l'Etang Sec summit crater is filled by two lava domes emplaced during the 1902 and 1929 eruptions. Recorded eruptions date back to the 18th century; only two modest phreatic or phreatomagmatic eruptions took place prior to 1902. The catastrophic 1902 eruption, which destroyed the city of St. Pierre, became the type-example of Pelean eruptions and marked the onset of modern volcanological studies of the behavior of pyroclastic flows.

Sarychev Peak, Matua Island (Russia)

48.092°N, 153.2°E, Summit elev. 1496 m

KVERT raised the Aviation Color Code to Yellow (the second lowest level on a four-color scale) for Sarychev Peak on 10 January, noting that the temperature of a thermal anomaly was 79.8 degrees Celsius above background temperatures, possibly indicating lava in the crater.

Geological summary: Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Soufriere St. Vincent, St. Vincent

13.33°N, 61.18°W, Summit elev. 1220 m

University of the West Indies Seismic Research Centre (UWI-SRC) and National Emergency Management Organisation (NEMO) reported that the lava dome in Soufrière St. Vincent’s main crater that first formed on 27 December continued to grow during 6-12 January. Observations were made during a field visit on 5 January, during a helicopter overflight on 6 January, and based on 9 January drone video. During that time the dome grew and expanded to the W, produced small, hot rockfalls, had a blocky appearance, and continued to emit gasses and steam. Gas-and-steam plumes were also visible from Belmont Observatory. The Alert Level remained at Orange (the second highest level on a four-color scale).

Geological summary: Soufrière St. Vincent is the northernmost and youngest volcano on St. Vincent Island. The NE rim of the 1.6-km wide summit crater is cut by a crater formed in 1812. The crater itself lies on the SW margin of a larger 2.2-km-wide caldera, which is breached widely to the SW as a result of slope failure. Frequent explosive eruptions after about 4,300 years ago produced pyroclastic deposits of the Yellow Tephra Formation, which cover much of the island. The first historical eruption took place in 1718; it and the 1812 eruption produced major explosions. Much of the northern end of the island was devastated by a major eruption in 1902 that coincided with the catastrophic Mont Pelée eruption on Martinique. A lava dome was emplaced in the summit crater in 1971 during a strictly effusive eruption, forming an island within a lake that filled the crater. A series of explosive eruptions in 1979 destroyed the 1971 dome and ejected the lake; a new dome was then built.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that incandescence at Suwanosejima’s Ontake Crater was visible nightly during 4-11 January. Two explosions on 5 January produced ash plumes that rose 1.2 km above the crater rim and ejected bombs 400 m away from the crater. Two explosions during 9-10 January generated ash plumes that rose 1 km and again ejected bombs 400 m away. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that during 4-11 January incandescence from Minamidake Crater (at Aira Caldera’s Sakurajima volcano) was often visible nightly. The sulfur dioxide emission rate remained high and reached extremely high levels of 5,000 tons per day on 6 January. An explosion at 1642 on 4 January produced an ash plume that rose 1.8 km above the crater rim and merged into weather clouds. An explosion at 1133 on 11 January generated an ash plume that rose 1.3 km. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite and wind model data, the Darwin VAAC reported that during 6-12 January ash plumes from Dukono rose to 2.1 km (7,000 ft) a.s.l. and drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 31 December and 6-7 January; ash plumes rose up to 3.5 km (11,500 ft) a.s.l. and drifted S and NE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

PVMBG reported that at 1058 on 7 January an ash plume from Ibu rose 500 m above the summit and drifted N. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kadovar, Papua New Guinea

3.608°S, 144.588°E, Summit elev. 365 m

Based on satellite and wind model data, the Darwin VAAC reported that during 5-7 January ash plumes from Kadovar rose to altitudes of 1.5-1.8 km (5,000-6,000 ft) a.s.l. and drifted NW and W.

Geological summary: The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that a thermal anomaly over Karymsky was visible in satellite images during 1-4 and 6-7 January. Explosions on 2 January produced ash plumes that rose to 5.5 km (18,000 ft) a.s.l. and drifted almost 130 km SE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Summit elev. 4754 m

KVERT reported that Strombolian and sometimes Vulcanian activity at Klyuchevskoy continued during 1-8 January and lava advanced down the Kozyrevsky drainage on the S flank. A large bright thermal anomaly was identified daily in satellite images. Steam-and-gas plumes with some ash rose to 6 km (19,700 ft) a.s.l. and drifted 70 km in multiple directions. The Aviation Color Code remined at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Lewotolo, Lomblen Island (Indonesia)

8.274°S, 123.508°E, Summit elev. 1431 m

PVMBG reported that a Strombolian eruption at Lewotolo continued during 6-12 January. Gray-and-white ash plumes rose 200-700 m above the summit and rumbling and banging sounds were reported. Incandescent material was ejected as far as 700 m SE from the crater during 6-8 January. Strombolian explosions ejected material 100-200 m above the summit crater on 7 January. The Alert Level remained at 3 (on a scale of 1-4) and the public was warned to stay 4 km away from the summer crater.

Geological summary: The Lewotolo (or Lewotolok) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH reported that the lava flow that began on 2 January from a vent on the SW flank, 200 m below Pacaya’s Mackenney Crater, formed 3-4 branches and was 400 m long by 6 January. Avalanches of material descended the W, SW, and S flanks. Strombolian explosions produced ash plumes that rose 100-150 m above the cone and drifted 10 km S and SW. Explosions on 7 January produced ash plumes that rose 300-500 m above the crater and ejected ballistics 300 m away from the crater. Explosions rattled structures in nearby villages. Two new lava flows emerged on the N flank at 0740; one traveled 50 m and the other 200 m. Active lava flows on the W and SW flanks were 550 m long. Overnight during 7-8 January a new lava flow on the SW flank descended 425 m. During 9-12 January Strombolian explosions continued to ejected material up to 300 m above the cone. The lava flow on the SW flank reached a length of 1.2 km on 9 January and 1.5 km by 10 January; it remained active through 12 January. Ash plumes drifted 10 km W during 10-11 January, and avalanches form the crater area descended the SW and S flanks.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Popocatepetl, Mexico

19.023°N, 98.622°W, Summit elev. 5393 m

CENAPRED reported that each day during 5-12 January there were 11-31 steam, gas, and ash emissions from Popocatépetl. Minor ashfall was reported in several municipalities in Puebla including San Salvador el Verde (30 km NNE), Atlixco (23 km SE), San Andrés Cholula (35 km E), San Nicolás de los Ranchos (15 km ENE), and Domingo Arenas. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale).

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 1-8 January. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Sinabung, Indonesia

3.17°N, 98.392°E, Summit elev. 2460 m

PVMBG reported that on 5 January gray ash plumes rose 800 m above Sinabung’s summit and drifted E and SE. Avalanches of material traveled 500-1,000 m down the E and SE flanks. Eruptive events were recorded during 7 and 9-10 January though weather clouds mostly obscured visual confirmation of ash clouds; an ash plume rose 1 km above the summit late on 9 January. The Alert Level remained at 3 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions to 5 km in the SE sector and 4 km in the NE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Source: GVP


REMOVE ADS AND SUPPORT OUR WORK

Producing content you read on this website takes a lot of time, effort, and hard work. If you value what we do here, please consider becoming a supporter.

OPEN AD-FREE ACCOUNT


Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar