The Weekly Volcanic Activity Report: August 29 - September 4, 2018

The Weekly Volcanic Activity Report: August 29 - September 4, 2018

New activity/unrest was reported for 3 volcanoes between August 29 and September 4, 2018. During the same period, ongoing activity was reported for 17 volcanoes.

New activity/unrest: Krakatau, Indonesia | Manam, Papua New Guinea | Veniaminof, United States.

Ongoing activity: Aira, Kyushu (Japan) | Ambae, Vanuatu | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaiian Islands (USA) | Mayon, Luzon (Philippines) | Reventador, Ecuador | Rincon de la Vieja, Costa Rica | Sabancaya, Peru | Sangay, Ecuador | Santa Maria, Guatemala | Semeru, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Sierra Negra, Isla Isabela (Ecuador) | Turrialba, Costa Rica.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, notices of volcanic activity posted are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

New activity/unrest

Krakatau, Indonesia

6.102°S, 105.423°E, Summit elev. 813 m

Based on satellite data, the Darwin VAAC reported that during 29-30 August and during 3-4 September ash plumes from Anak Krakatau rose to altitudes of 1.2-1.5 km (4,000-5,000 ft) a.s.l. and drifted SW, W, NW, and N. The Alert Level remained at 2 (on a scale of 1-4); residents and visitors were warned not to approach the volcano within 2 km of the crater.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Manam, Papua New Guinea

4.08°S, 145.037°E, Summit elev. 1807 m

RVO reported that during 26 August-3 September white plumes rose from Manam’s Main and Southern craters. Seismicity was at low levels.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Veniaminof, United States

56.17°N, 159.38°W, Summit elev. 2507 m

Late on 2 September seismic activity at Veniaminof increased, indicative of unrest, prompting AVO to raise the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. The report noted no other signs of eruptive activity.

Geological summary: Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that there were 14 events and 15 explosions at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 27 August-3 September, with ash plumes rising as high as 2.8 km above the crater rim and material ejected as far as 1.3 km. Crater incandescence was occasionally visible at night. The sulfur dioxide emission rate was 1,500 tons/day on 27 August. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Ambae, Vanuatu

15.389°S, 167.835°E, Summit elev. 1496 m

The Vanuatu Meteorology and Geo-hazards Department reported that at 2015 on 1 September explosions at Ambae’s Lake Voui generated ash plumes that rose 4-11 km above the crater rim. According to the Wellington VAAC the ash plumes were visible in satellite images rising as high as 10.7 km (35,000 ft) a.s.l. and drifting E; the ash quickly dissipated. Moderate ashfall was likely produced in areas NE and E. The Alert Level remained at 3 (on a scale of 0-5).

Geological summary: The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite data, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 29 August-4 September ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted N, NE, and E.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 24-31 August that sent ash plumes to 3-6 km (17,100 ft) a.s.l. A thermal anomaly was visible in satellite data during 24-25 and 30 August. Ash plumes drifted about 135 km SE, S, and SW during 24-25 and 27-30 August, producing ashfall on 29 and 30 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that heavy rain generated lahars during 29 August-1 September that descended Fuego’s El Jute (SE), Las Lajas (SE), Cenizas (SSW), Taniluyá (SW), Seca (W), Mineral, Honda, and Pantaleón (W) drainages. The lahars were hot, had a sulfur odor, and carried tree branches and blocks (2-3 m in diameter). On 1 September lahars disrupted roads between San Pedro Yepocapa (8 km NW) and Sangre de Cristo (8 km WSW), and from Finca Palo Verde and El Porvenir (8 km ENE). During 2-4 September explosions produced ash plumes that rose as high as 950 m above the crater rim and drifted 10-15 km W and SW. Avalanches of incandescent material were confined to the crater. Ashfall was reported in areas downwind including San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II (8 km SW), Morelia (9 km SW), and Finca Palo Verde.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that an ash plume from Karymsky was identified in satellite images drifting about 40 km S on 25 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported a break in visible lava activity at Kilauea’s Fissure 8 during 26-31 August. On 1 September incandescence at Fissure 8 was evident in the afternoon; spattering from a small area produced lava flows that slowly covered the 15 x 65 m crater floor by the evening. Lava continued to fill the Fissure 8 crater on 3 September. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Mayon, Luzon (Philippines)

13.257°N, 123.685°E, Summit elev. 2462 m

PHIVOLCS reported that at 0653 on 27 August a short-lived degassing event at Mayon produced a light-brown ash plume that rose 200 m above the summit rim and drifted NE. During 28 August-3 September white steam plumes rose as high as 1 km and drifted in multiple directions. Crater incandescence was visible nightly. The Alert Level remained at 2 (on a 0-5 scale) and PHIVOLCS reminded residents to stay away from the 6-km-radius Permanent Danger Zone and the 7-km Extended Danger Zone on the SSW and ENE flanks.

Geological summary: Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Reventador, Ecuador

0.077°S, 77.656°W, Summit elev. 3562 m

During 29 August-3 September IG reported a high level of seismic activity at Reventador, including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions. Steam, gas, and ash plumes rose as high as 600 m above the crater rim and drifted NE, NW, and W. Crater incandescence was visible.

Geological summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Rincon de la Vieja, Costa Rica

10.83°N, 85.324°W, Summit elev. 1916 m

OVSICORI-UNA reported two distinct, two-minute-long eruptions at Rincón de la Vieja beginning at 0434 and 1305 on 31 August. Weather conditions prevented webcam views and estimates of plume heights.

Geological summary: Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Sabancaya, Peru

15.787°S, 71.857°W, Summit elev. 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosions at Sabancaya averaged 25 per day during 27 August-2 September. Hybrid earthquakes were infrequent and of low magnitude. Gas-and-ash plumes rose as high as 3 km above the crater rim and drifted 50 km SE, E, and NE. The MIROVA system detected six thermal anomalies, and on 2 September the sulfur dioxide gas flux was high at 3,970 tons/day. The report noted that the public should not approach the crater within a 12-km radius.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sangay, Ecuador

2.005°S, 78.341°W, Summit elev. 5286 m

Based on satellite images and wind model data, the Washington VAAC reported that during 28 August-3 September ash emissions from Sangay rose to 5.8-6.7 km (19,000-22,000 ft) a.s.l. and drifted over 45 km in multiple directions. A thermal anomaly was sometimes visible.

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Santa Maria, Guatemala

14.757°N, 91.552°W, Summit elev. 3745 m

INSIVUMEH reported that during 1-4 September weak explosions at Santa María's Santiaguito lava-dome complex generated ash plumes that rose 600-700 m and drifted SW. Avalanches of material descended the SE flanks of the lava dome. Ashfall was reported to the south in Monte Claro.

Geological summary: Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

Based on analysis of satellite images and wind model data, the Darwin VAAC reported that on 4 September a discrete eruption at Semeru generated an ash plume that rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite data during 25 and 28-30 August; cloudy weather prevented views of the volcano on the other days during 24-31 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Sierra Negra, Isla Isabela (Ecuador)

0.83°S, 91.17°W, Summit elev. 1124 m

IG reported that the eruption at Sierra Negra that began on 26 June was divided into two main phases. The first and most energetic phase lasted one day (26 June) and was characterized by the opening of five fissures and lava flows traveling as far as 7 km from the vents. Lava was only produced from fissure 4 during the 57-day-long second phase (27 June-23 August), with lava reaching the sea on 6 July and expanding the coastline. By 25 August the lava flows in total covered an area of 30.6 square kilometers. Activity continued to decline the last week of August with decreased seismicity, gas emission, and no surficial activity visible.

Geological summary: The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Turrialba, Costa Rica

10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported that at 1340 on 30 August an event at Turrialba produced an ash plume that passively rose 200 m above the crater rim and drifted SW. Gas-and-ash emissions became continuous during 31 August-1 September, with plumes rising 200 m and drifting SW and W.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar