Active volcanoes in the world: October 21 – 27, 2015

active-volcanoes-in-the-world-october-21-27-2015

New activity/unrest was observed at 3 volcanoes from October 21 – 27, 2015. During the same period, ongoing activity was reported for 16 volcanoes.

New activity/unrest: Fuego, Guatemala  | Rinjani, Lombok Island (Indonesia)  | Turrialba, Costa Rica.

Ongoing activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  | Bagana, Bougainville (Papua New Guinea)  | Batu Tara, Komba Island (Indonesia)  | Colima, Mexico  | Cotopaxi, Ecuador  | Dukono, Halmahera (Indonesia)  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Nevado del Ruiz, Colombia  | Piton de la Fournaise, Reunion Island (France)  | Popocatepetl, Mexico  | Santa Maria, Guatemala  | Shishaldin, Fox Islands (USA)  | Sinabung, Indonesia  | Ubinas, Peru.

New activity/unrest

Fuego, Guatemala
14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that during 21-22 October explosions at Fuego generated ash plumes that rose 350-650 m above the crater. A lava flow advanced in the Santa Teresa (W) drainage. Seismicity increased during 25-26 October, and gas-and-ash plumes rose 1.2 km and drifted S and SW. Lava fountains rose as high as 200 m, feeding 850-m-long lava flows in the Santa Teresa and Trinidad (S) drainages. On 27 October lava fountains rose 300 m, and lava flows advanced as far as 1.5 km in the Santa Teresa, Trinidad, and Las Lajas (S) drainages. Strombolian explosions produced ash plumes that rose almost 1 km high.

Geologic summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Rinjani, Lombok Island (Indonesia)
8.42°S, 116.47°E, Summit elev. 3726 m

PVMBG reported that on 25 October at 1004 an eruption at Rinjani generated an ash plume that rose 200 m above the Barujari crater, inside the caldera. Ash fell on the flanks, especially to the SW. The report noted that no seismic nor surficial precursory events were detected. The Alert Level was raised to 2 (on a scale of 1-4). Based on satellite observations, the Darwin VAAC reported that on 26 and 28 October ash plumes rose to altitudes of 3-4 km (10,000-13,000 ft) a.s.l. and drifted 45-75 km SW and WSW.

Geologic summary: Rinjani volcano on the island of Lombok rises to 3726 m, second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the west side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak (Samalas) caldera. The caldera formed during one of the largest Holocene eruptions globally in 1257 CE, which truncated Samalas stratovolcano. The western half of the caldera contains a 230-m-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the east end of the caldera. Historical eruptions dating back to 1847 have been restricted to Barujari cone and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.

Turrialba, Costa Rica
10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported that a small ash eruption at Turrialba began at 1153 on 23 October. An explosion at 1710 on 24 October produced an ash plume that rose 800 m above the crater and drifted SSW. Multiple explosive events occurred during 24-25 October; poor weather conditions sometimes prevented views of the activity. On 25 October 10-minute-long explosive events began at 0730 and 0927 and generated ash plumes that rose 1.5 km and 200 m, respectively; plumes drifted NW and W. Pyroclastic flows from collapsing ash columns were generated both times. Volcanologists conducting fieldwork on 26 October observed morphological changes at the S edge of the W crater and nearby areas due to the recent activity. They noted fresh light-colored ash and tephra deposits on the steep wall of the active crater. Three small explosions generated ash, steam, and gas emissions. Tephra was deposited as far as 400 m away in various directions from the crater.

Geologic summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Ongoing activity

Aira, Kyushu (Japan)
31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that during 13-16 October small scale explosions occurred at Showa Crater, at Aira Caldera’s Sakurajima volcano. The Alert Level remained at 3 (on a 5-level scale).

Geologic summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Asosan, Kyushu (Japan)
32.884°N, 131.104°E, Summit elev. 1592 m

JMA reported that since the 14 September eruptive activity at Asosan’s Nakadake Crater continued. On 23 October explosions generated ash plumes that rose 1.4-1.6 km above the crater, producing tepha-fall in areas to the W and NW. The Alert Level remained at 3 (on a scale of 1-5).

Geologic summary: The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 cu km of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 AD. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Bagana, Bougainville (Papua New Guinea)
6.137°S, 155.196°E, Summit elev. 1855 m

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 21 and 24-26 October ash plumes from Bagana rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted 45-85 km W and NW.

Geologic summary: Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical, roughly 1850-m-high cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides. Satellite thermal measurements indicate a continuous eruption from before February 2000 through at least late August 2014.

Batu Tara, Komba Island (Indonesia)
7.792°S, 123.579°E, Summit elev. 748 m

Based on analyses of satellite imagery, the Darwin VAAC reported that during 22-26 October ash plumes from Batu Tara rose to altitudes of 1.5 km (5,000 ft) a.s.l. and drifted 35-65 km SW and W.

Geologic summary: The small isolated island of Batu Tara in the Flores Sea about 50 km N of Lembata (fomerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption, during 1847-52, produced explosions and a lava flow.

Colima, Mexico
19.514°N, 103.62°W, Summit elev. 3850 m

Based on satellite images, wind data, webcam views, and notices from the Mexico City MWO and Colima Tower, the Washington VAAC reported continuing emission from Colima. On 21 October an ash plume drifted N and quickly dissipated, and on 24 October an ash puff dissipated to the E. On 25 October a gas plume with minor amounts of ash was detected. An emission drifted NE on 28 October.

Geologic summary: The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Cotopaxi, Ecuador
0.677°S, 78.436°W, Summit elev. 5911 m

IG reported that during 21-27 October gas, steam, and ash plumes rose from Cotopaxi almost daily as high as 2 km above the crater and drifted NW, W, and SW. A small lahar detected on 24 October descended the NW flank but stayed with Cotopaxi National Park boundaries. A small lahar descended the W flank the next day.

Geologic summary: Symmetrical, glacier-clad Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend as far as the base of Cotopaxi. The modern conical volcano has been constructed since a major edifice collapse sometime prior to about 5000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions of Cotopaxi, and lahars have frequently devastated adjacent valleys. The most violent historical eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. The last significant eruption of Cotopaxi took place in 1904.

Dukono, Halmahera (Indonesia)
1.68°N, 127.88°E, Summit elev. 1335 m

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 21-26 and 28 October ash plumes from Dukono rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted 25-140 km W, NW, NE, and E.

Geologic summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Karymsky, Eastern Kamchatka (Russia)
54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that moderate explosive activity at Karymsky continued during 16-23 October. Satellite images showed ash plumes drifting 100 km SE during 19-20 and 22 October, and a thermal anomaly over the volcano on 20 and 22 October. The Aviation Color Code remained at Orange.

Geologic summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kilauea, Hawaiian Islands (USA)
19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 21-27 October. The lava lake continued to circulate and spatter in the Overlook vent; small sections of the inner wall veneer fell into the lake on 22 October causing increased spattering and sloshing. The June 27th NE-trending lava flow continued to be active within 2.2-6.3 km NE of Pu'u 'O'o Crater.

Geologic summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions of Kilauea are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Nevado del Ruiz, Colombia
4.892°N, 75.324°W, Summit elev. 5279 m

Servicio Geológico Colombiano’s (SGC) Observatorio Vulcanológico y Sismológico de Manizales reported that during 20-26 October seismicity at Nevado del Ruiz was characterized by long-period earthquakes and short-duration volcanic tremor associated with gas-and-ash emissions. Earthquakes occurred at depths between 1.1 and 8.8 km. The largest event was recorded at 0953 on 21 October, a local M 2.3, near Arenas Crater at a depth of 3.4 km. Significant amounts of water vapor and gas rose from the crater during the week. A gas, steam, and ash plume rose 2 km on 22 October. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity").

Geologic summary: Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers >200 sq km. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Piton de la Fournaise, Reunion Island (France)
21.244°S, 55.708°E, Summit elev. 2632 m

OVPDLF reported that the effusive phase of the eruption at Piton de la Fournaise ended at 0802 on 19 October; around the same time tremor started to increase, and then gradually increased again starting at 0800 on 22 October. Observers reported that a small explosion in the vent ejected spatter.

Geologic summary: The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Popocatepetl, Mexico
19.023°N, 98.622°W, Summit elev. 5426 m

CENAPRED reported that during 21-22 and 24-27 October the seismic network at Popocatépetl recorded 12-69 daily emissions; 128 were detected on 23 October. Cloud cover often prevented visual observations. Variable nighttime crater incandescence was observed on some days. Two, four, and six explosions were detected on 21, 22, and 23 October, respectively. Four explosions were detected during 26-27 October. The Alert Level remained at Yellow, Phase Two.

Geologic summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5426 m 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major plinian eruptions, the most recent of which took place about 800 CE, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since precolumbian time.

Santa Maria, Guatemala
14.756°N, 91.552°W, Summit elev. 3772 m

INSIVUMEH reported that on 21 October heavy rainfall in the area triggered steaming hot lahars which descended Santa María’s Nima I and San Isidro drainages. Both lahars carried blocks as large as 1.5 m in diameter; the Nimá I deposit was 18 m wide and 1.5 m deep. Explosions during 21-22 October generated ash plumes that rose 700 m above the crater and drifted SW, causing ashfall in El Rosario Palajunoj finca. Ash plumes from explosions drifted S and SE during 25-26 October; ashfall was reported in areas downwind.

Geologic summary: Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Shishaldin, Fox Islands (USA)
54.756°N, 163.97°W, Summit elev. 2857 m

AVO reported that seismicity at Shishaldin continued to be slightly elevated over background levels during 21-27 October, indicating that low-level eruptive activity confined to the summit crater continued. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geologic summary: The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Sinabung, Indonesia
3.17°N, 98.392°E, Summit elev. 2460 m

Based on information from PVMBG, and analyses of satellite imagery and wind data, the Darwin VAAC reported that on 21 October an ash plume from Sinabung rose to an altitude of 6.1 (20,000 ft) a.s.l.

Geologic summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical, 2460-m-high andesitic-to-dacitic volcano is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Ubinas, Peru
16.355°S, 70.903°W, Summit elev. 5672 m

Instituto Geofísico del Perú (IGP) Observatorio Volcanológico del Sur (OVS) reported that during 20-26 October seismicity at Ubinas decreased overall; the level of long-period earthquakes remained high while hybrid and volcano-tectonic signals were at low levels. On 21 October an ash plume rose 1 km and drifted NE and E. Bluish gas-and-steam plumes rose from the crater during the rest of the period.

Geologic summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *