The Weekly Volcanic Activity Report: September 8 - 14, 2021

The Weekly Volcanic Activity Report: September 8 - 14, 2021

New activity/unrest was reported for 5 volcanoes from September 8 to 14, 2021. During the same period, ongoing activity was reported for 17 volcanoes.

New activity/unrest: Askja, Iceland | Fukutoku-Oka-no-Ba, Volcano Islands (Japan) | La Palma, Spain | Pagan, Mariana Islands (USA) | Whakaari/White Island, North Island (New Zealand).

Ongoing activity: Aira, Kyushu (Japan) | Cerro Hudson, Chile | Ebeko, Paramushir Island (Russia) | Great Sitkin, Andreanof Islands (USA) | Grimsvotn, Iceland | Ibu, Halmahera (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Krysuvik-Trolladyngja, Iceland | Langila, New Britain (Papua New Guinea) | Lewotolok, Lembata Island (Indonesia) | Merapi, Central Java (Indonesia) | Nevados de Chillan, Chile | Pavlof, United States | Semisopochnoi, Aleutian Islands (USA) | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Taal, Luzon (Philippines).

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network.

New activity/unrest

Askja, Iceland

65.033°N, 16.783°W, Summit elev. 1080 m

On 9 September IMO raised the Aviation Color Code for Askja to Yellow, noting that inflation that began in early August was ongoing and notably rapid. The uplift was centered at the W edge of Oskjuvatn caldera, which rose a total of 7 cm. The data suggested that magma was accumulating at 2-3.5 km depth.

Geological summary: Askja is a large basaltic central volcano that forms the Dyngjufjöll massif. It is truncated by three overlapping calderas, the largest of which is 8 km wide and may have been produced primarily from subglacial ring-fracture eruptions rather than by subsidence. A major rhyolitic explosive eruption from Dyngjufjöll about 10,000 years ago was in part associated with the formation of Askja caldera. Many postglacial eruptions also occurred along the ring-fracture. A major explosive eruption on the SE caldera margin in 1875 was one of Iceland's largest during historical time. It resulted in the formation of a smaller 4.5-km-wide caldera, now filled by Öskjuvatn lake, that truncates the rim of the larger central caldera. The 100-km-long Askja fissure swarm, which includes the Sveinagja graben, is also related to the Askja volcanic system, as are several small shield volcanoes such as Kollatadyngja. Twentieth-century eruptions have produced lava flows from vents located mostly near Öskjuvatn lake.

Fukutoku-Oka-no-Ba, Volcano Islands (Japan)

24.285°N, 141.481°E, Summit elev. -29 m

The Japan Coast Guard reported that during a 12 September overflight of Fukutoku-Oka-no-Ba, observers noted that the W island was unchanged while the E side had been completely eroded and submerged. Yellow-green to yellow-brown discolored water extended from the vent area to the SW, S, and SE, suggesting continuing eruptive activity. Another area of discolored water had an approximate diameter of 2 km and was about 2 km ENE of the volcano. The discolored water prompted JMA to issue a navigation warning to nearby vessels.

Geological summary: Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

La Palma, Spain

28.57°N, 17.83°W, Summit elev. 2426 m

Instituto Volcanológico de Canarias (INVOLCAN) reported that a seismic swarm beneath Cumbre Vieja at the S part of La Palma began at 1618 on 11 September and was likely associated with a magmatic intrusion. The swarm intensified in number of events and magnitude, and by 1600 on 12 September a total of 315 earthquakes had been recorded and ranged 8-13 km in depth. The largest event was a M 2.8 (on the Mb_lg scale). On 13 September a scientific committee comprised of representatives from multiple agencies and institutions raised the Alert Level to Yellow (the second lowest level on a four-color scale) for the municipalities of El Paso, Los Llanos de Aridane, Mazo, and Fuencaliente de la Palma. By 0800 on 14 September 2,935 earthquakes had been detected. Larger events were felt by residents during 13-14 September; the largest earthquake was a M 3.9, recorded at 0600 on 14 September. Overall, the events were becoming shallower (8-10 km) and hypocenters migrated slightly to the W. GPS and tiltmeter networks showed deformation totaling 1.5 cm centered over the clusters of epicenters.

INVOLCAN noted that 10 seismic swarms have been detected at La Palma since 2017; one in 2017, one in 2018, five in 2020, and three in 2021. The earthquakes in the previous swarms were deeper, between 20 and 30 km, and were less intense than the current swarm.

Geological summary: The 47-km-long wedge-shaped island of La Palma, the NW-most of the Canary Islands, is composed of two large volcanic centers. The older northern one is cut by the massive steep-walled Caldera Taburiente, one of several massive collapse scarps produced by edifice failure to the SW. The younger Cumbre Vieja, the southern volcano, is one of the most active in the Canaries. The elongated volcano dates back to about 125,000 years ago and is oriented N-S. Eruptions during the past 7,000 years have formed abundant cinder cones and craters along the axis of Cumbre Vieja, producing fissure-fed lava flows that descend steeply to the sea. Eruptions recorded since the 15th century have produced mild explosive activity and lava flows that damaged populated areas. The southern tip of the island is mantled by a broad lava field emplaced during the 1677-1678 eruption. Lava flows also reached the sea in 1585, 1646, 1712, 1949, and 1971.

Pagan, Mariana Islands (USA)

18.13°N, 145.8°E, Summit elev. 570 m

The U.S. Geological Survey reported that emissions of ash and sulfur dioxide from Pagan were last detected on 6 September, though robust steam plumes occasionally continued to be visible at least through 14 September. The Aviation Color Code and the Volcano Alert Level were lowered to Yellow and Advisory, respectively, on 10 September.

Geological summary: Pagan Island, the largest and one of the most active of the Mariana Islands volcanoes, consists of two stratovolcanoes connected by a narrow isthmus. Both North and South Pagan stratovolcanoes were constructed within calderas, 7 and 4 km in diameter, respectively. North Pagan at the NE end of the island rises above the flat floor of the northern caldera, which may have formed less than 1,000 years ago. South Pagan is a stratovolcano with an elongated summit containing four distinct craters. Almost all of the recorded eruptions, which date back to the 17th century, have originated from North Pagan. The largest eruption during historical time took place in 1981 and prompted the evacuation of the sparsely populated island.

Whakaari/White Island, North Island (New Zealand)

37.52°S, 177.18°E, Summit elev. 294 m

On 14 September GeoNet reported that intermittent ash emissions at Whakaari/White Island continued to be visible during the previous week. Vigorous fumarolic plumes from the active vent area sometimes carried minor amounts of ash downwind at low altitudes and occasionally deposited ash on the island. Periods where ash was visible in the emissions did not correspond to explosive seismic or acoustic signals, suggesting that the ash was produced by weak wall fragments falling into the gas stream through the active vents and not from eruptive activity. Seismicity was characterized by low levels of volcanic tremor and occasional volcanic earthquakes. The Volcanic Alert Level remained at 2 and the Aviation Color Code remained at Yellow.

Geological summary: The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible at night during 6-10 September. Deformation data showed inflation beginning at around 0300 on 13 September. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Cerro Hudson, Chile

45.9°S, 72.97°W, Summit elev. 1905 m

SERNAGEOMIN lowered the Alert Level for Cerro Hudson to Green (the lowest level on a four-color scale) on 7 September, based on decreased activity. Neither morphological changes nor thermal anomalies were visible in satellite images or webcam views during 16-31 August. Seismicity remained low and sulfur dioxide emissions were not recorded.

Geological summary: The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. It is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive volcano covers an area of 300 km2. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur N of the volcano and others occupy the SW and SE flanks. This volcano has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 km3 of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW portion of the caldera.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

According to volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 4 and 6-8 September produced ash plumes that rose as high as 2 km (6,600 ft) a.s.l. and drifted N, S, and E. Ash fell in Severo-Kurilsk on 6 and 8 September. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Great Sitkin, Andreanof Islands (USA)

52.076°N, 176.13°W, Summit elev. 1740 m

AVO reported that lava effusion continued at Great Sitkin during 7-14 September, though weather clouds often prevented webcam and satellite views. Seismicity remained elevated and was characterized by small earthquakes consistent with lava effusion. A radar image from 9 September indicated that the lava dome had grown to 1,100 m E to W and 860 m N to S, and was 25-30 m thick. Lava began to advance though a gap in the S rim of the summit crater. Elevated surface temperatures were visible in satellite data on 14 September. The Aviation Color Code and the Volcano Alert Level remained at Orange and Watch, respectively.

Geological summary: The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Grimsvotn, Iceland

64.416°N, 17.316°W, Summit elev. 1719 m

Icelandic Meteorological Office (IMO) reported that the jökulhlaup from the eastern and western parts of Grímsvötn's caldera that began on 1 September had decreased during 8-10 September. IMO warned of continuing flood conditions in the downstream parts of the Skaftá river.

Geological summary: Grímsvötn, Iceland's most frequently active volcano in historical time, lies largely beneath the vast Vatnajökull icecap. The caldera lake is covered by a 200-m-thick ice shelf, and only the southern rim of the 6 x 8 km caldera is exposed. The geothermal area in the caldera causes frequent jökulhlaups (glacier outburst floods) when melting raises the water level high enough to lift its ice dam. Long NE-SW-trending fissure systems extend from the central volcano. The most prominent of these is the noted Laki (Skaftar) fissure, which extends to the SW and produced the world's largest known historical lava flow during an eruption in 1783. The 15-cu-km basaltic Laki lavas were erupted over a 7-month period from a 27-km-long fissure system. Extensive crop damage and livestock losses caused a severe famine that resulted in the loss of one-fifth of the population of Iceland.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

PVMBG reported that during 7-12 September gray-and-white ash plumes from Ibu rose 200-800 m above the summit and drifted N and W. The Alert Level remained at a 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that a thermal anomaly over Karymsky was identified in satellite images during 3-10 September. Ash plumes rose 4 km (13,100 ft) a.s.l. and drifted 165 km E during 2-6 and 9 September. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Krysuvik-Trolladyngja, Iceland

63.917°N, 22.067°W, Summit elev. 360 m

The fissure eruption in the W part of the Krýsuvík-Trölladyngja volcanic system, close to Fagradalsfjall on the Reykjanes Peninsula, had paused for several days. The Institute of Earth Sciences reported that based on aerial photography acquired on 9 September, during the pause, the area of the flow field had grown to 4.6 square kilometers, and the total volume erupted was 143 million cubic meters. The crater floor was visible and was at least 70 m deep, with a deeper cavity or drainage sometimes visible.

Lava visibly returned on 11 September; RSAM values increased and low lava fountains emerged from a few areas on the flow field to the W of the main crater. Lava also returned to the main vent. Lava fountains from the main crater were visible for periods of 5-10 minutes on 13 September and lava advanced in multiple directions. Lava flowed N on 14 September. By 15 September lava quickly advanced S, flowing past the earthen barriers constructed at the S end of Geldingadalur valley, and turning E into the Nàtthagi valley. The Aviation Color Code remained at Orange due to the lack of ash and tephra emissions, though IMO warned of the potential for lapilli and scoria fallout within a 650 m radius of the active vent. Authorities also warned of gas emission hazards.

Geological summary: The Krýsuvík-Trölladyngja volcanic system is described by the Catalogue of Icelandic Volcanoes as an approximately 50-km-long composite fissure swarm trending about N38°E, including a 30-km-long swarm of fissures, with no central volcano. It is one of the volcanic systems arranged en-echelon along the Reykjanes Peninsula west of Kleifarvatn lake. The Fagradalsfjall and Krýsuvík fissure swarms are considered splits or secondary swarms of the Krýsuvík-Trölladyngja volcanic system. Small shield volcanoes have produced a large portion of the erupted volume within the system. Several eruptions have taken place since the settlement of Iceland, including the eruption of a large basaltic lava flow from the Ogmundargigar crater row around the 12th century. The latest eruption, identified through tephrochronology, took place during the 14th century.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Summit elev. 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that during 11-12 September ash plumes from Langila rose to 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted W. A thermal anomaly at the summit was identified in satellite data.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Lewotolok, Lembata Island (Indonesia)

8.274°S, 123.508°E, Summit elev. 1431 m

PVMBG reported that the eruption at Lewotolok continued during 7-14 September. White-and-gray plumes rose as high as 700 m above the summit and drifted NWW, SW, and S. The Alert Level remained at 3 (on a scale of 1-4) and the public was warned to stay 3 km away from the summit crater.

Geological summary: The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

BPPTKG reported that both of Merapi's two lava domes, situated just below the SW rim and in the summit crater, continued to grow during 3-9 September. The SW dome grew 5 m taller and had an estimated volume of 1.55 million cubic meters and the summit lava dome grew 1 m wider and had an estimated volume of 2.85 million cubic meters. One pyroclastic flow traveled 2 km down the SW flank and as many as 129 lava avalanches traveled a maximum of 2 km SW. According to the Darwin VAAC ash plumes rose 3 km (10,000 ft) a.s.l. and drifted E on 9 September, based on satellite and webcam views. The Alert Level remained at 3 (on a scale of 1-4), and the public was warned to stay 3-5 km away from the summit based on location.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Nevados de Chillan, Chile

36.868°S, 71.378°W, Summit elev. 3180 m

SERNAGEOMIN reported continuing explosive and effusive activity at Nevados de Chillán's Nicanor Crater during 16-31 August, though weather conditions often prevented visual confirmation. Explosions generated ash plumes that rose as high as 1.1 km above the crater rim and were denser towards the end of August. Crater incandescence was sometimes visible at night, and though not intense, it brightened during explosive periods. The L5 and L6 lava flows continued to advance, though at a very low rate, averaging 1 m/h for L5. The L5 lava flow was 1,380 m long and L6 was 850 m long based on satellite images, measured from the rim of Nicanor Crater to the distal end of the flows. A decrease in thermal anomalies over the flows identified in satellite images suggested that the flows were cooling. The average temperature was 73 degrees Celsius with a maximum of 100 degrees for L5 and an average of 79 degrees Celsius with a maximum of 100 degrees for L6. Temperatures at the vents at Nicanor Crater averaged 115 degrees Celsius and were as high as 252 degrees during explosive phases. Sulfur dioxide emissions measured from local DOAS stations abruptly decreased and remained low. There was a total of five thermal anomalies, all with low radiance values. On 29 August pyroclastic flows traveled 560 m NE and collapses of L5's middle and distal parts of the flow were observed. The Alert Level remained at Yellow, the second lowest level on a four-color scale. ONEMI stated that Alert Level Yellow (the middle level on a three-color scale) remained in place for the communities of Pinto and Coihueco, noting that the public should stay at least 2 km away from the crater.

Geological summary: The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The dominantly andesitic Cerro Blanco (Volcán Nevado) stratovolcano is located at the NW end of the massif. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The Volcán Nuevo lava-dome complex formed during 1906-1945 on the NW flank of Viejo. The Volcán Arrau dome complex was then constructed on the SE side of Volcán Nuevo between 1973 and 1986, and eventually exceeded its height. Smaller domes or cones are present in the 5-km valley between the two major edifices.

Pavlof, United States

55.417°N, 161.894°W, Summit elev. 2493 m

AVO reported that seismicity at Pavlof continued at low levels during 7-14 September and was interspersed with periods of more energetic tremor. Although weather clouds often obscured views, a series of four very minor ash emissions were visible in webcam images for a period of five hours on 10 September. The explosions produced minor and diffuse ash emissions that rose from a vent on the E flank and dissipated within minutes. A small explosion was recorded on 12 September and on 13 September, though cloud cover prevented visual confirmation of both events. The Volcano Alert Level and Aviation Color Code remained at Watch and Orange, respectively.

Geological summary: The most active volcano of the Aleutian arc, Pavlof is a 2519-m-high Holocene stratovolcano that was constructed along a line of vents extending NE from the Emmons Lake caldera. Pavlof and its twin volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof Sister, Pavlof has been frequently active in historical time, typically producing Strombolian to Vulcanian explosive eruptions from the summit vents and occasional lava flows. The active vents lie near the summit on the north and east sides. The largest historical eruption took place in 1911, at the end of a 5-year-long eruptive episode, when a fissure opened on the N flank, ejecting large blocks and issuing lava flows.

Semisopochnoi, Aleutian Islands (USA)

51.93°N, 179.58°E, Summit elev. 1221 m

AVO reported that eruptive activity at Semisopochnoi's North Cerberus crater continued during 7-14 September. Seismicity was elevated and characterized by periods of continuous tremor. Short-lived explosions lasting several minutes were detected daily in infrasound data. Small ash clouds from the explosions rose 3-4.6 km (10,000-15,000 ft) and dissipated within two hours. Sulfur dioxide emissions were detected in satellite images at altitudes less than 3 km (10,000 ft) a.s.l., sometimes extending downwind for hundreds of kilometers. During 7-9 September periods of lower-altitude ash emissions interspersed with voluminous steam plumes were observed in web camera images moving horizontally by the wind and rising no higher than 1.5 km (5,000 ft) a.s.l. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank of Cerberus appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a bright thermal anomaly over Sheveluch was identified in satellite images during 3-10 September. The Kamchatka Branch of Geophysical Services (KBGS; Russian Academy of Sciences) Kamchatka volcano station reported that tourists visiting the volcano on 8 September experienced ashfall; weather conditions prevented views of summit. The next day they saw a small pyroclastic flow and that night saw crater incandescence and small incandescent avalanches traveling SE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that four explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 3.3 km above the crater rim during 3-10 September. Large volcanic bombs were ejected 500 m from the crater. Crater incandescence was visible nightly. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Taal, Luzon (Philippines)

14.002°N, 120.993°E, Summit elev. 311 m

PHIVOLCS reported that gas-and-steam plumes from Taal rose as high as 2.5 km above the lake during 8-14 September and drifted NE, SE, S, and SW. Sulfur dioxide emissions were 5,246-11,840 tonnes/day during 9-10 and 12-13 September. The Volcano Alert Level remained at a 2 (on a scale of 0-5). PHIVOLCS reminded the public that the entire Taal Volcano Island is a Permanent Danger Zone (PDZ) and that boating on Taal Lake was prohibited.

Geological summary: Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Reference:

Smithsonian / US Geological Survey Weekly Volcanic Activity Report, 8 September-14 September 2021 - Managing Editor: Sally Kuhn Sennert

Featured image credit: TW


REMOVE ADS AND SUPPORT OUR WORK

Producing content you read on this website takes a lot of time, effort, and hard work. If you value what we do here, please consider becoming a supporter.

OPEN AD-FREE ACCOUNT


Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar