The Weekly Volcanic Activity Report: January 15 - 21, 2020

The Weekly Volcanic Activity Report: January 15 - 21, 2020

New activity/unrest was reported for 4 volcanoes from January 15 to 21, 2020. During the same period, ongoing activity was reported for 16 volcanoes.

New activity/unrest: Krakatau, Indonesia | Kuchinoerabujima, Ryukyu Islands (Japan) | Semeru, Eastern Java (Indonesia) | Taal, Luzon (Philippines).

Ongoing activity: Aira, Kyushu (Japan) | Asosan, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Ijen, Eastern Java (Indonesia) | Karangetang, Siau Island (Indonesia) | Klyuchevskoy, Central Kamchatka (Russia) | Nishinoshima, Japan | Pacaya, Guatemala | Reventador, Ecuador | Santa Maria, Guatemala | Sheveluch, Central Kamchatka (Russia) | Shishaldin, Fox Islands (USA) | Suwanosejima, Ryukyu Islands (Japan) | White Island, North Island (New Zealand).

New activity/unrest

Krakatau, Indonesia, 6.102°S

105.423°E, Summit elev. 155 m

PVMBG reported that during 13-19 January dense white gas plumes rose 25-300 m above the bottom of Anak Krakatau’s crater. Two eruptive events were recorded by the seismic network on 15 January. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km-radius hazard zone from the crater.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Kuchinoerabujima, Ryukyu Islands (Japan)

30.443°N, 130.217°E, Summit elev. 657 m

White plumes from Kuchinoerabujima rose 600 m above the crater rim during 14-17 January. Minor eruptive activity from 1659 on 17 January through 1030 on 20 January generated grayish-white plumes that rose 300 m. Sulfur dioxide emissions were high at 800 and 1,600 tons per day on 15 and 16 January, respectively. The Alert Level remained at 3 (the middle level on a scale of 1-5).

Geological summary: A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

PVMBG reported that an eruption at Semeru was recorded at 0725 on 18 January and lasted almost four minutes. A gray ash plume rose around 400 m above the crater rim and drifted SW and W. Ash plumes rose 300-400 m and drifted W and N during 19-21 January. The Alert Level remained at 2 (on a scale from 1-4); the public was warned to stay 1 km away from the active crater and 4 km away on the SSE flank.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Taal, Luzon (Philippines)

14.002°N, 120.993°E, Summit elev. 311 m

PHIVOLCS reported that the eruption at Taal continued during 14-21 January, though was generally weaker. Activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Satellite images showed that the Main Crater lake was gone, and new craters had formed on the floor and N flank of Volcano Island. Sulfur dioxide emissions were 4,186 tonnes per day on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network. Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 tonnes per day on 20 January and as low as 344 tonnes per day on 21 January. From 1300 on 12 January to 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 148,987 people in 493 evacuation centers as of 1800 on 21 January. The Alert Level remained at 4 (on a scale of 0-5).

Geological summary: Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported nighttime crater incandescence at Minamidake Crater (at Aira Caldera’s Sakurajima volcano) during 14-20 January. Small eruptive events were occasionally recorded by the seismic network. A total of 21 explosions were detected, with ash plumes rising as high as 2 km above the crater rim and large blocks ejected as far as 1.3 km away from the crater. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Asosan, Kyushu (Japan)

32.884°N, 131.104°E, Summit elev. 1592 m

JMA reported that eruptive activity at Asosan was recorded during 7-20 January. Plumes rose 0.9-1 km above the crater rim during 15-20 January and caused ashfall in areas downwind; the Tokyo VAAC reported that ash plumes mainly drifted S, SE, E, and NE. The Alert Level remained at 2 (on a scale of 1-5).

Geological summary: The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite and wind model data, and information from PVMBG, the Darwin VAAC reported that during 15-21 January ash plumes from Dukono rose 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted E, SE, S, and SW. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 11 and 13-14 January that sent ash plumes up to 3 km (10,000 ft) a.s.l.; ash plumes drifted E and caused ashfall in Severo-Kurilsk. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that there were 8-17 explosions per hour recorded at Fuego during 14-21 January, generating ash plumes that rose as high as 1.1 km above the crater rim and generally drifted 10-22 km SW and W. Ashfall was reported in several areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), and El Porvenir (8 km ENE). Explosions sometimes produced shock waves that rattled houses in communities within a 7 km radius, though they were felt up to 25 km away during 19-20 January. Incandescent material was ejected 100-500 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), Honda, and Las Lajas (SE) ravines. Ash plumes drifted 18 km E during 20-21 January.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Ijen, Eastern Java (Indonesia)

8.058°S, 114.242°E, Summit elev. 2769 m

PVMBG reported that during 1-18 January white plumes rose 250-400 m above Ijen’s water lake surface and no change in the color of the water was noted. An increase in the number of shallow volcanic earthquakes was detected; continuous tremor emerged on 11 January, peaked on 15 January, and then decreased during 17-18 January. The temperature of the lake water fluctuated, though overall it decreased from 38 degrees Celsius in June 2019 to 20 degrees Celsius on 14 January; the lake water was 46 degrees Celsius during a period of increased activity from February to March 2018. The Alert Level remained at 1 (on a scale of 1-4), and residents and visitors were advised to not approach the crater rim or descend to the crater floor.

Geological summary: The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery.

Karangetang, Siau Island (Indonesia)

2.781°N, 125.407°E, Summit elev. 1797 m

PVMBG reported that during 13-19 January lava continued to effuse from Karangetang’s Main Crater (S), traveling as far as 1.8 km down the Nanitu, Pangi, and Sense drainages on the SW and W flanks. Sometimes dense white plumes rose 50-300 m above the summit. Incandescence from both summit craters was visible at night. The Alert Level remained at 2 (on a scale of 1-4).

Geological summary: Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Summit elev. 4754 m

KVERT reported that a thermal anomaly over Klyuchevskoy was identified in satellite images during 10-12 and 15-16 January. The Aviation Color Code remained at Orange.

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Nishinoshima, Japan

27.247°N, 140.874°E, Summit elev. 25 m

The Japan Coast Guard (JCG) reported that during an overflight of Nishinoshima conducted from 1335 to 1412 on 17 January surveyors observed continuous gray emissions rising from the central crater of the pyroclastic cone to 1.8 km (5,900 ft) a.s.l. and drifting E and NE. The central crater was open to the ENE; lava flows traveled NE and entered the ocean, producing steam plumes at the coastline.

Geological summary: The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH reported that during 15-21 January Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 100 m above the crater rim, building a small cone. Multiple lava flows, some short-lived, traveled as far as 150 m W and S, and down the NW flank towards Cerro Chino.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Reventador, Ecuador

0.077°S, 77.656°W, Summit elev. 3562 m

IG reported that during 15-22 January seismic data from Reventador’s network indicated a high level of seismic activity, including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions. Daily gas-and-ash plumes rose as high as 1.6 km above the crater rim and drifted W, NW, and N. Incandescent blocks rolled 700 m down the flanks. Weather sometimes prevented views of the summit area.

Geological summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Santa Maria, Guatemala

14.757°N, 91.552°W, Summit elev. 3745 m

INSIVUMEH reported that explosions at Santa María's Santiaguito lava-dome complex generated ash plumes that rose 800-900 m above the crater and drifted as far as 1.4 km W and SW. INSIVUMEH noted that ashfall was likely in areas downwind. Avalanches of material descended the NW, SW, and SE flanks of Caliente cone.

Geological summary: Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 10-17 January. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Shishaldin, Fox Islands (USA)

54.756°N, 163.97°W, Summit elev. 2857 m

AVO reported that after almost a week of relatively quiet conditions at Shishaldin, during 16-17 January seismicity began to climb and the temperature of the thermal anomaly slightly increased. Activity intensified at 0030 on 19 January and by around 0630 the plume became more ash-rich. By around 0828 the ash plume rose to 6.1 km (20,000 ft) a.s.l. and drifted 150 km E, prompting AVO to raise the Aviation Color Code to Red and the Volcano Alert Level to Warning. Lava flows descended the NE and N flanks and generated lahars. By 1530 seismicity abruptly decreased, though around the same time the robust steam-and-ash plume (visible to pilots and in webcam and satellite images) rose as high as 9.1 km (30,000 ft) a.s.l. and continued to drift 150 km SSE. Minor amounts of ash fell in False Pass. Ash emissions had significantly declined by 2200 and seismicity was low; the Aviation Color Code was lowered to Orange and the Volcano Alert Level was lowered to Watch just after midnight the next morning. A detached volcanic cloud was identified in satellite images drifting ESE over the Pacific Ocean. During 20-21 January elevated surface temperatures were identified in satellite images, though the N-flank flow was not active. Seismicity remained above background levels, and coincided with detections in infrasound data that suggested small explosions at the vent. Steaming from the summit was visible in webcam images.

Geological summary: The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that Suwanosejima’s seismic network recorded an explosion at Ontake Crater on 10 January and occasional small eruptive events during 12-17 January. Plumes rose as high as 1 km above the crater rim. Residents of Toshima Village (4 km SSW) reported ashfall and explosion and rumbling sounds. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

White Island, North Island (New Zealand)

37.52°S, 177.18°E, Summit elev. 294 m

On 22 January GeoNet reported that lava had been extruded into the vents created by the 9 December White Island eruption based on visual observations from the week before and on 21 January. Airborne gas measurements indicated high levels on 21 January and the vent temperature was very hot at more than 400 degrees Celsius. According to a news article another person died as a result from the eruption, bringing the total number of deaths to 20. The Volcanic Alert Level remained at 2 and the Aviation Color Code remained at Yellow.

Geological summary: The uninhabited White Island, also known as Whakaari in the Maori language, is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of eruptions since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities.

Source: GVP

Comments

wade 6 months ago

The sleeping giants are waking Google the 5th Mass Extinction we are in the 6th Mass Extinction

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar