Active volcanoes in the world: June 28 - July 4, 2017

Active volcanoes in the world: June 28 - July 4, 2017

New activity/unrest was reported for 6 volcanoes between June 28 and July 4, 2017. During the same period, ongoing activity was reported for 17 volcanoes.

New activity/unrest: Bogoslof, Fox Islands (USA) | Dieng Volcanic Complex, Central Java (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Reventador, Ecuador | Sheveluch, Central Kamchatka (Russia) | Ulawun, New Britain (Papua New Guinea).

Ongoing activity: Bagana, Bougainville (Papua New Guinea) | Bezymianny, Central Kamchatka (Russia) | Cleveland, Chuginadak Island (USA) | Copahue, Central Chile-Argentina border | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Langila, New Britain (Papua New Guinea) | Nishinoshima, Japan | Poas, Costa Rica | Popocatepetl, Mexico | Sabancaya, Peru | Sinabung, Indonesia | Suwanosejima, Ryukyu Islands (Japan) | Turrialba, Costa Rica.

New activity/unrest

Bogoslof, Fox Islands (USA)

53.93°N, 168.03°W, Elevation 150 m

AVO reported that an explosion at Bogoslof was detected at 0124 on 30 June and lasted about 20 minutes. A small cloud from the event drifted about 16 km N and by 1815 had dissipated. Seismicity declined afterwards but continued intermittently at low levels. Beginning at 1248 on 2 July a significant explosive event was detected in seismic and infrasound data. The event lasted about 16 minutes, and produced an ash plume that rose as high as 11 km (36,000 ft) a.s.l. and drifted E. AVO raised the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Following the eruption seismicity declined and no signs of volcanic unrest were detected in seismic, infrasound, or satellite data on 3 July; the ACC was lowered to Orange and the VAL was lowered to Watch. The ACC and VAL were again raised to Red and Warning, respectively, following an explosive event that began at 1651 on 4 July and lasted 13 minutes. An eruption cloud rose as high as 8.5 km (28,000 ft) a.s.l. and drifted SE. An 11-minute-long eruption began at 1907 on 4 July, producing a small cloud that rose 9.8 km (32,000 ft) a.s.l. and drifted SE.

Geological summary: Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Dieng Volcanic Complex

Central Java (Indonesia), 7.2°S, 109.92°E, Elevation 2565 m

BNPB reported that a phreatic eruption at the Sileri Crater lake (Dieng Volcanic Complex) occurred at 1154 on 2 July, ejecting mud and material 150 m high, and 50 m to the N and S. The event injured 11 of 18 tourists that were near the crater. According to a news article a helicopter on the way to help evacuated people after the event crashed, killing all eight people (four crewmen and four rescuers) on board. 

PVMBG scientists visited the next day and observed weak white emissions rising 60 m. The report noted other events during the recent past; an event at 1303 on 30 April ejected material 10 m high and 1 m past the crater edge that formed a 1-2 mm thick deposit, and an emission at 0941 on 24 May consisting of gas and black “smoke” that rose 20 m. The Alert Level remained at 1 (on a scale of 1-4) and PVMBG warned the public not to approach Sileri Crater within a 100-m radius.

Geological summary: The Dieng plateau in the highlands of central Java is renowned both for the variety of its volcanic scenery and as a sacred area housing Java's oldest Hindu temples, dating back to the 9th century CE. The Dieng volcanic complex consists of two or more stratovolcanoes and more than 20 small craters and cones of Pleistocene-to-Holocene age over a 6 x 14 km area. Prahu stratovolcano was truncated by a large Pleistocene caldera, which was subsequently filled by a series of dissected to youthful cones, lava domes, and craters, many containing lakes. Lava flows cover much of the plateau, but have not occurred in historical time, when activity has been restricted to minor phreatic eruptions. Toxic volcanic gas emission has caused fatalities and is a hazard at several craters. The abundant thermal features that dot the plateau and high heat flow make Dieng a major geothermal prospect.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Elevation 1513 m

KVERT reported that a thermal anomaly over Karymsky was identified in satellite images during 23-24 and 27-28 June. An ash plume drifted 55 km SW on 24 June. Explosions on 26 June generated ash plumes that rose to an altitude of 6 km (19,700 ft) a.s.l. and drifted 165 km SE during 26-27 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Reventador, Ecuador

0.077°S, 77.656°W, Elevation 3562 m

During 28 June-4 July IG reported a high level of seismic activity including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions at Reventador. During 28 June-1 July plumes of water vapor and ash rose as high as 500 m above the crater rim. A 2-km-long lava flow continued to slowly advance down the NW flank. Incandescent blocks from the crater rolled at most 300 m down the W, SW, and S flanks. Cloudy weather prevented visual observations during 2-4 July.

Geological summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly was identified daily in satellite images over Sheveluch during 23-30 June. Explosions on 27 June generated ash plumes that rose as high as 10 km (32,800 ft) a.s.l. and drifted 1,400 km SE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Ulawun, New Britain (Papua New Guinea)

5.05°S, 151.33°E, Elevation 2334 m

Based on analyses of satellite imagery, the Darwin VAAC reported that on 28 June ash plumes from Ulawun rose to an altitude of 2.7 km (9,000 ft) a.s.l. and drifted W.

Geological summary: The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. Ulawun volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m of the 2334-m-high Ulawun volcano is unvegetated. A prominent E-W-trending escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and eastern flanks. A steep-walled valley cuts the NW side of Ulawun volcano, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported that events at Showa Crater (at Aira Caldera’s Sakurajima volcano) at 1811 and 1904 on 27 June generated ash plumes that rose 1 km above the crater rim. Weak incandescence from the crater was noted on 30 June. During 30 June-3 July there were five events, one of which was explosive. Material was ejected as far away as 500 m from the crater. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bagana, Bougainville (Papua New Guinea)

6.137°S, 155.196°E, Elevation 1855 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 2 July an ash plume from Bagana drifted W at an altitude of 2.1 km (7,000 ft) a.s.l.

Geological summary: Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported that incandescence from Bezymianny's lava dome was observed at night during 23-30 June, and a lava flow continued to flow down the W flank of the dome. A thermal anomaly was identified daily in satellite images. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Elevation 1730 m

A moderate 10-minute-long explosion at Cleveland was detected in both seismic and infrasound data beginning at 0319 on 4 July, prompting AVO to raise the Aviation Color Code to Orange and the Volcano Alert Level to Watch. After the event, seismicity declined and remained low. Satellite images showed no clear evidence of an ash plume.

Geological summary: Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Copahue, Central Chile-Argentina border

37.856°S, 71.183°W, Elevation 2953 m

OVDAS-SERNAGEOMIN reported that during 5-15 June the seismic network at Copahue detected long-period earthquakes. Gas plumes constantly rose from El Agrio crater and on several days contained ash. The highest plume, detected on 5 June, rose 300 m and drifted E. The Buenos Aires VAAC reported that on 1 July the webcam recorded a steam-and-gas plume with minor ash near the summit. The Alert Level remained at Yellow (the second lowest on a four-color scale); SERNAGEOMIN recommended no entry into a restricted area within 1 km of the crater.

Geological summary: Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 28 June-4 July ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted E, ESE, and S.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

Based on observations by residents of Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 23-30 June generated ash plumes that rose as high as 2 km (6,600 ft) a.s.l. Ashfall was reported in Severo-Kurilsk on 24 and 26 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

During 28 June-4 July HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater, from a vent high on the NE flank of the cone, and from a small lava pond (which had many small spattering sites along the margin) in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. A solidified lava ramp extended from the tube exit high on the sea cliff down to the growing delta, whose leading edge was about 100 m from the tube exit on the sea cliff.

Geological summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that during 22-24 and 27-28 June a weak thermal anomaly was identified in satellite images at Klyuchevskoy. Explosions on 24 and 26 June generated ash plumes that rose to 5-6 km (16,400-19,700 ft) a.s.l. and drifted 112 km S and SE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Elevation 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that on 21 June ash plumes from Langila rose 2.1 km (7,000 ft) a.s.l. and drifted almost 95 km NW.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Nishinoshima, Japan

27.247°N, 140.874°E, Elevation 25 m

Based on satellite images, pilot observations, and information from JMA, the Tokyo VAAC reported that during 30 June-2 July ash plumes from Nishinoshima rose 1.5-3 km (5,000-10,000 ft) a.s.l. and drifted W and E.

Geological summary: The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Poas, Costa Rica

10.2°N, 84.233°W, Elevation 2708 m

OVSICORI-UNA reported low-to-moderate-amplitude tremor with occasional periods of high-frequency volcano-tectonic events detected at Poás during 28-29 June. Webcams recorded intense incandescence at night from the bottom of the crater. A sulfur odor was noted in San Rafael de Poás and Vara Blanca. An event at 1115 on 19 June generated a plume that rose 1 km above the vents. An event at 1450 may have generated a plume, but poor visibility did not allow for confirmation. During 1-4 July frequent but small Strombolian activity ejected incandescent material that fell around vent “A” (Boca Roja). Plumes of water vapor, magmatic gases, and particulates rose at most 500 m from the vents.

Geological summary: The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Popocatepetl, Mexico

19.023°N, 98.622°W, Elevation 5426 m

Each day during 28 June-4 July CENAPRED reported 67-240 and steam and gas emissions from Popocatépetl, some of which contained minor amounts of ash. Explosions were detected on 28 June (4), on 30 June (1), on 2 July (5), and on 3 July (1), though cloudy conditions prevented visual confirmation of possible ash, gas, and steam plumes. Minor ashfall on 2 July was noted in Ozumba, Amecameca, Tlalmanalco, Chalco, Ayapango, Tenango del Aire, and San Pedro Nexapa. An explosion at 1145 on 4 July generated an ash plume that rose 2.5 km above the crater rim and drifted W. The Alert Level remained at Yellow, Phase Two.

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5426 m 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major plinian eruptions, the most recent of which took place about 800 CE, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since precolumbian time.

Sabancaya, Peru

15.787°S, 71.857°W, Elevation 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya continued to decline; there was an average of five explosions recorded per day during 26 June-2 July. The explosions were also less energetic. Gas-and-ash plumes rose as high as 1.5 km above the crater rim and drifted more than 30 km SE. Sulfur dioxide flux was as high as 1,472 tons per day, recorded on 1 July.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

Based on PVMBG observations, satellite images, and wind data, the Darwin VAAC reported that during 29 June-3 July ash plumes from Sinabung rose 3.3-4.9 km (11,000-16,000 ft) a.s.l. and drifted ESE.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Elevation 796 m

Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that on 2 July ash plumes from Suwanosejima rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted N.

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Turrialba, Costa Rica

10.025°N, 83.767°W, Elevation 3340 m

OVSICORI-UNA reported that during 29 June-4 July seismicity at Turrialba was characterized by low-to-medium amplitude tremor, and a small number of low-amplitude volcano-tectonic and long-period events. Plumes of water vapor, magmatic gases, and occasional ash rose as high as 1 km above the West Crater fumaroles. Incandescence from the main crater was recorded at night. Minor ashfall and a sulfur odor was reported in areas of San José including Rancho Redondo, Goicoechea, Moravia, San Pedro Montes de Oca, and Guadalupe.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar