The Weekly Volcanic Activity Report: June 6 – 12, 2018

the-weekly-volcanic-activity-report-june-6-12-2018

New activity/unrest was reported for 8 volcanoes between June 6 and 12, 2018. During the same period. ongoing activity was reported for 15 volcanoes.

New activity/unrest: Fuego, Guatemala | Great Sitkin, Andreanof Islands (USA) | Ibu, Halmahera (Indonesia) | Kerinci, Indonesia | Manam, Papua New Guinea | Ruapehu, North Island (New Zealand) | Sierra Negra, Isla Isabela (Ecuador) | Ulawun, New Britain (Papua New Guinea).

Ongoing activity: Agung, Bali (Indonesia) | Aira, Kyushu (Japan) | Ambae, Vanuatu | Ambrym, Vanuatu | Cleveland, Chuginadak Island (USA) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Kadovar, Papua New Guinea | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Langila, New Britain (Papua New Guinea) | Pacaya, Guatemala | Popocatepetl, Mexico | Sangay, Ecuador | Sheveluch, Central Kamchatka (Russia).

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, notices of volcanic activity posted are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

New activity/unrest

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

During 6-12 June INSIVUMEH and CONRED reported that strong lahars at Fuego were often hot, steaming, and had a sulfur odor, and were generated from heavy rains and the recent accumulation of pyroclastic-flow deposits from the 3 June events. On 6 June lahars descended the Santa Teresa, Mineral, and Taniluyá drainages (tributaries of the Pantaleón river) and possibly the Honda drainage, halting search-and-rescue efforts. The lahars were 30-40 m wide, 2-5 m deep, and carried blocks (2-3 m in diameter) and tree parts. CONRED noted on 9 June that deposits on roads were being cleaned at a rate of 150 m per day, and that exposed deposits were as hot as 150 degrees Celsius. Significant hot lahars, 40 m wide and 5 m deep, traveled down the Seca, Mineral, Niágara, and Taniluyá drainages, carrying rocks and tree branches. On 10 June a strong lahar traveled down the Seca, Mineral, Niagara, Taniluyá, and Ceniza drainages. It was 35 m wide, 3 m deep, and carried blocks up to 1 m in diameter, tree trunks, and branches. Lahars that traveled down the Seca and Mineral drainages on 11 June were 40 m wide and 3 m deep. Lahars on 12 June were 20-45 m wide and 2-5 m deep, and flowed down the Ceniza and Mineral rivers.

During 6-11 June as many as nine weak explosions per hour produced ash plumes that rose as high as 1.1 km above the crater and drifted 8-15 km W, SW, and S. Avalanches of material descended the Las Lajas and Santa Teresa ravines. Some explosions vibrated local structures. At 0820 on 8 June a pyroclastic flow descended the Las Lajas and El Jute drainages, producing an ash plume that rose as high as 6 km and drifted W and SW. Explosive activity increased during 11-12 June, with dense ash plumes rising 1.3 km and drifting as far as 25 km N and NE. Pyroclastic flows traveled down the Seca drainage. According to CONRED, as of 12 June, the number of people that had died due to the 3 June pyroclastic flows was 110, and 197 more were missing. In addition, 12,578 people had been evacuated.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Great Sitkin, Andreanof Islands (USA)

52.076°N, 176.13°W, Summit elev. 1740 m

Seismicity at Great Sitkin was elevated during the previous five days, though at 1139 on 10 June a seismic signal indicating a possible short-lived steam explosion prompted AVO to raise the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. No infrasound signal associated with the event was detected, and no volcanic clouds rose about the meteorological cloud deck at 2.4 km (8,000 ft) a.s.l.

Geological summary: The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

PVMBG reported that at 1206 on 6 June an eruption at Ibu generated an ash plume that rose at least 500 m above the crater rim and drifted N. An event at 1750 on 12 June produced an ash plume that rose 600 m and drifted N. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kerinci, Indonesia

1.697°S, 101.264°E, Summit elev. 3800 m

Based on satellite data, the Darwin VAAC reported that on 10 June an ash plume from Kerinci rose to an altitude of 4 km (13,000 ft) a.s.l. and drifted W.

Geological summary: The 3800-m-high Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. Kerinci is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. The volcano contains a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit of Kerinci. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. The frequently active Gunung Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Manam, Papua New Guinea

4.08°S, 145.037°E, Summit elev. 1807 m

Based on a pilot observation, the Darwin VAAC reported that on 10 June an ash plume from Manam rose to an altitude of 1.8 km (6,000 ft) a.s.l. The ash plume was not identifiable in satellite images.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Ruapehu, North Island (New Zealand)

39.28°S, 175.57°E, Summit elev. 2797 m

On 5 June GeoNet reported that a new heating cycle at Ruapehu’s summit Crater Lake began, as indicated by a recent rise in the water temperature. The increasing lake temperature began 29 May, at a rate of about 1°C per day. Volcanic tremor also increased, representing a greater flow of hydrothermal fluids into the lake. Many heating and cooling cycles have occurred in the past; the current cycle does not indicate an unusual sign of unrest. The Volcanic Alert Level remained at 1 (minor volcanic unrest) and the Aviation Color Code remained at Green.

Geological summary: Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Sierra Negra, Isla Isabela (Ecuador)

0.83°S, 91.17°W, Summit elev. 1124 m

On 8 June IG reported a continuing high level of seismicity at Sierra Negra, characterized by a larger number and magnitude of earthquakes, indicating magma movement. The number of events per day had been significantly increasing since mid-2016. In the previous 10 days there was an average of 42 local events/day; on 25 May there were 104 events, the largest number of earthquakes per day recorded since 2015. In addition, in a 24-hour period during 7-8 June there were a total of 48 volcano-tectonic events, two long-period events, and three hybrid earthquakes; a M 4.8 long-period earthquake was recorded at 0715 on 8 June. The earthquake epicenters were mainly located on the edges of the crater, in two NE-SW trending lineaments; the first covered the N and W edges of the crater and the second went from the NE part around to the S edge. Data showed very large deformation at the caldera’s center, compared with lower levels of deformation outside of the caldera.

Geological summary: The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Ulawun, New Britain (Papua New Guinea)

5.05°S, 151.33°E, Summit elev. 2334 m

According to the Darwin VACC, a NOTAM (Notice to Airmen) stated that on 8 June an ash plume from Ulawun rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted W.

Geological summary: The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Ongoing activity

Agung, Bali (Indonesia)

8.343°S, 115.508°E, Summit elev. 2997 m

PVMBG reported that during 1 May-7 June activity at Agung remained at a relatively high level. Emissions were mostly water vapor, occasionally with ash. In general, tiltmeter and GPS showed long-term deflation since December 2017, though inflation began to be detected the second week of May; deformation analysis indicated that magma continued to accumulate about 3-4 km below the crater. Low- and high-frequency earthquakes also suggested rising magma. Sulfur dioxide flux was 190-203 tons/day, and thermal anomalies in the crater were identified in satellite data. The erupted volume of lava was estimated to be 23 million cubic meters, equivalent to about a third of the total crater volume. At 2214 on 10 June an event generated an ash plume that drifted W at an unspecified altitude. The Alert Level remained at 3 (on a scale of 1-4) and the exclusion zone was stable at a 4-km radius.

Geological summary: Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that there were eight events and five explosions at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 4-11 June. Crater incandescence was occasionally visible at night. Ash plumes rose up to 2 km above the crater rim, except an event at 1135 on 10 June produced a plume that rose 3.5 km. Tephra was ejected as far as 1.3 km from the crater during 8-11 June. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Ambae, Vanuatu

15.389°S, 167.835°E, Summit elev. 1496 m

The Vanuatu Meteorology and Geo-hazards Department reported that activity at Ambae’s Lake Voui decreased in May, and by 7 June had ceased; the Alert Level was lowered to 2 (on a scale of 0-5) and a 2-km-radius exclusion zone was emplaced. Steam and volcanic gas emissions continued, and were reportedly smelled by local residents near the volcano.

Geological summary: The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Ambrym, Vanuatu

16.25°S, 168.12°E, Summit elev. 1334 m

On 7 June the Vanuatu Geohazards Observatory (VGO) reported that the lava lakes in Ambrym’s Benbow and Marum craters continued to be active, and produced sustained and substantial gas-and-steam emissions. The Alert Level remained at 2 (on a scale of 0-5); the report reminded the public to stay outside of the Permanent Danger Zone defined as a 1-km radius from Benbow Crater and a 2.7-km radius from Marum Crater.

Geological summary: Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Summit elev. 1730 m

AVO reported that low-level unrest at Cleveland continued during 6-12 June. Elevated surface temperatures were identified using satellite data on most days, during times of cloud-free observations. Nothing unusual was observed in seismic or pressure sensor data. Steam emissions were observed during 11-12 June. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory.

Geological summary: The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on PVMBG observations and satellite data, the Darwin VAAC reported that during 6-12 June ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted W, NW, N, NE, and E.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

KVERT reported that a diffuse ash plume drifting 8 km E of Ebeko was identified in satellite images on 5 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Kadovar, Papua New Guinea

3.608°S, 144.588°E, Summit elev. 365 m

According to the Darwin VAAC a pilot observed an ash plume from Kadovar rising to an altitude of 1.2 km (4,000 ft) a.s.l. on 10 June. The ash plume was not identified in satellite data.

Geological summary: The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that the eruption at Kilauea’s Lower East Rift Zone (LERZ) and at Overlook Crater within Halema`uma`u Crater continued during 7-12 June. Lava fountaining and spatter was concentrated at Fissure 8, feeding lava flows that spread through Leilani Estates and Lanipuna Gardens subdivisions, and built out the coastline where the fast-moving flow entered the ocean in the Kapoho Bay area. Minor lava activity at Fissures 16/18 was occasionally noted.

Inward slumping of the crater rim and walls of Halema`uma`u continued, adjusting from the withdrawal of magma and subsidence of the summit area; the floor had subsided at least 100 m during the previous few weeks, and by 12 June the lowest point was 300 m below the crater rim. Steam plumes rose from areas in the crater as well as from circumferential cracks adjacent to the crater.

Summit explosions occurred almost daily. Explosions at 1607 and 0244 on 6 and 8 June, respectively, each produced an ash plume that rose 3 km (10,000 ft) a.s.l. An explosion was recorded at 0448 on 9 June. Two explosions, the second larger than the first, were recorded at 0046 and 0443 on 11 June. An ash-poor explosion occurred at 0152 on 12 June. A pattern of an increasing number of earthquakes, an explosion, and then a drop-off of seismicity immediately afterwards had emerged during the past few weeks and continued.

A total of 12 rockfalls in Pu'u 'O'o Crater were recorded between 1031 and 1056 on 8 June, following a M 3.2 earthquake at the summit. A red dust plume was visible around 1050 but dissipated quickly.

Fountaining at Fissue 8 was stable, though by 10 June three closely spaced fountains were active within the 35-m-high spatter cone. The heights of the fountains varied, but rose no higher than 70 m. Pele's hair and other volcanic glass from the fountaining fell within Leilani Estates. The fountains continued to feed the fast-moving lava flow that traveled NE, and then SE around Kapoho Crater, and into the ocean. The width of the channel varied from 100-300 m along its length. Periodic overflows sometimes sent small flows down the sides of the channel. Lava entered the ocean at Kapoho Bay, building a lava delta that by 11 June was just over 100 hectares in area. A plume of laze rose from the entry points. An area of strong thermal upwelling in the ocean around 920 m out from the visible lava-delta front was visible beginning on 7 June, suggesting lava flowing on the ocean floor. According to a news report, the Hawaii County Mayor noted that by 8 June lava flows had destroyed over 600 homes.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Summit elev. 4754 m

KVERT reported that a thermal anomaly over Klyuchevskoy and a diffuse ash plume drifting 12 km W were identified in satellite images on 6 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Summit elev. 1330 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 7 June a minor ash emission from Langila rose to an altitude of 3.4 km (11,000 ft) a.s.l., slowly drifted SW, and detached form the summit. On 10 June a discrete event produced an ash plume that rose to 2.1 km (7,000 ft) a.s.l. and dissipated.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH and CONRED reported that on 6 June a lava flow emerged from a vent on La Meseta (the Mesa) on Pacaya’s NW flank and traveled 200 m over a period of six hours. Strombolian explosions ejected material as high as 50 m above the crater rim during 7-10 June.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Popocatepetl, Mexico

19.023°N, 98.622°W, Summit elev. 5393 m

CENAPRED reported that each day during 6-12 June there were 19-34 steam-and-gas emissions from Popocatépetl, and nightly crater incandescence. Explosions were detected almost every day: at 2026 on 7 June; 0130 on 8 June; 1756, 1931, and 2358 on 9 June; 1724 on 10 June. An explosion at 0220 on 11 June ejected incandescent fragments. The Alert Level remained at Yellow, Phase Two.

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Sangay, Ecuador

2.005°S, 78.341°W, Summit elev. 5286 m

The Washington VAAC reported that on 8 June a possible discrete ash emission from Sangay rose to an altitude of 5.8 km (19,000 ft) a.s.l. and drifted 28 km WSW before dissipating.

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a weak thermal anomaly over Sheveluch was identified in satellite images during 5-6 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *