Active volcanoes in the world: July 5 – 11, 2017

active-volcanoes-in-the-world-july-5-11-2017

New activity/unrest was reported for 4 volcanoes between July 5 and 11, 2017. During the same period, ongoing activity was reported for 15 volcanoes.

New activity/unrest: Bogoslof, Fox Islands (USA) | Fuego, Guatemala | Rincon de la Vieja, Costa Rica | Sheveluch, Central Kamchatka (Russia).

Ongoing activity: Aira, Kyushu (Japan) | Bezymianny, Central Kamchatka (Russia) | Cleveland, Chuginadak Island (USA) | Copahue, Central Chile-Argentina border | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Nishinoshima, Japan | Poas, Costa Rica | Sabancaya, Peru | Santa Maria, Guatemala | Sinabung, Indonesia | Turrialba, Costa Rica.

New activity/unrest

Bogoslof, Fox Islands (USA)

53.93°N, 168.03°W, Elevation 150 m

On 5 July AVO reported that no further activity was detected at Bogoslof after the explosions the day before; the Aviation Color Code (ACC) was lowered to Orange and the Volcano Alert Level (VAL) was lowered to Watch. A nine-minute-long eruption pulse was detected in seismic data starting at 1015 on 8 July was followed by a shorter pulse that began at 1029 and then a decline in seismicity. An ash plume identified in satellite images rose 9.1 km (30,000 ft) a.s.l. and drifted N. AVO raised the ACC to Red and the VAL to Warning, but lowered them back down to Orange and Watch, respectively, the next day. An eruption began at 2347 on 9 July, lasted five minutes, and was followed 15 minutes later by another explosion that lasted seven minutes. A small ash cloud visible in satellite images drifting SE may have risen as high as 6.1 km (20,000 ft) a.s.l. Explosions ended at 0235 on 10 July. The ACC was raised to Red and the VAL was raised to Warning but lowered back down one level early on 10 July. An eruption began at 1000 on 10 July and lasted eight minutes. Infrasound data indicated ash emissions but ash was not confirmed in satellite data. A 15-minute-long event began at 1706 on 10 July; no volcanic plume was identified in satellite data, and no volcanic lightning nor infrasound was detected. Seismicity declined after the episode.

Geological summary: Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Fuego, Guatemala

14.473°N, 90.88°W, Elevation 3763 m

INSIVUMEH reported that 4-7 explosions per hour at Fuego during 6-7 July generated ash plumes that rose as high as 950 m above the crater and drifted 6-10 km SW and W. Incandescent material was ejected 100-200 m above the crater rim, and caused avalanches of material that traveled down the Ceniza (SSW), Taniluyá (SW), Santa Teresa (SW), and Trinidad (S) drainages. Later on 7 July the rate of explosions increased to 7-10 per hour. During 7-9 July ash plumes rose as high as 1.1 km and drifted 15 km W, causing ashfall in Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), El Porvenir (8 km ENE), Sangre de Cristo (8 km WSW), and possibly San Pedro Yepocapa (8 km N). A lava flow traveled 1.5 km down the Las Lajas (SE) drainage. On 11 July INSIVUMEH declared that the 6th eruption of the year with lava effusion was in progress. Explosions generated ash plumes that rose as high as 1.3 km above the crater and drifted 35 km W, and shock waves rattled nearby structures. Ash fell in areas including Morelia, Panimache, Santa Sofía, El Porvenir, and Sangre de Cristo. Two lava flows were fed by lava fountains 150-250 m high; one lava flow traveled 2.3 km down the Las Lajas drainage and another traveled 1.7 km down the Santa Teresa (SW) drainage. Later that day INSIVUMEH reported that the 31-hour-long eruption had ended. A few weak-to-moderate explosions continued, generating ash plumes that rose 850 m and drifted 6 km W.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Rincon de la Vieja, Costa Rica

10.83°N, 85.324°W, Elevation 1916 m

OVSICORI-UNA reported that at 0849 on 5 July a small phreatic eruption at Rincón de la Vieja ejected material that fell within the crater.

Geological summary: Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 cu km and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 cu km Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent crater containing a 500-m-wide acid lake (known as the Active Crater) located ENE of Von Seebach crater.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly was identified daily in satellite images over Sheveluch during 1-7 July. Explosions on 2 July generated ash plumes that rose 10-11 km (32,800-36,100 ft) a.s.l.; one plume drifted 1,050 km SW and another drifted 350 km NE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported a very small eruption at Showa Crater (at Aira Caldera’s Sakurajima volcano) on 3 July. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported that incandescence from Bezymianny's lava dome was observed at night during 1-7 July, and a lava flow continued to flow down the W flank of the dome. A thermal anomaly was identified daily in satellite images. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Elevation 1730 m

AVO reported that during 5-11 July no significant activity at Cleveland was observed in cloudy or mostly cloudy satellite and web camera images; some minor degassing was noted. Seismicity remained low. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Copahue, Central Chile-Argentina border

37.856°S, 71.183°W, Elevation 2953 m

Based on webcam and satellite images the Buenos Aires VAAC reported that during 7-8 July steam plumes with minor amounts of ash rose from Copahue to altitudes of 4-4.3 km (13,000-14,000 ft) a.s.l. and drifted ESE.

Geological summary: Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 5-11 July ash plumes from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted in multiple directions.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

Based on observations by residents of Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions on 1 and 4 July generated ash plumes that rose as high as 2.6 km (8,500 ft) a.s.l. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Elevation 1513 m

KVERT reported that a thermal anomaly over Karymsky was identified in satellite images during 1-3 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

During 5-11 July HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater, from a vent high on the NE flank of the cone, and from a small lava pond (which had many small spattering sites along the margin) in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Several large cracks running parallel to the coastline spanned the width of the delta. Surface lava flows were active above and on the pali, and on the coastal plain.

Geological summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that during 1-2 and 5-6 July a weak thermal anomaly was identified in satellite images at Klyuchevskoy. Explosions during 1-2 and 5-6 July generated ash plumes that rose as high as 5 km (16,400 ft) a.s.l. and drifted 160 km SE, S, and SW. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Nishinoshima, Japan

27.247°N, 140.874°E, Elevation 25 m

Based on satellite images and pilot observations the Tokyo VAAC reported that on 5 July an ash plume from Nishinoshima drifted E.

Geological summary: The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Poas, Costa Rica

10.2°N, 84.233°W, Elevation 2708 m

OVSICORI-UNA reported that during 4-9 July plumes of magmatic gases, water vapor, and aerosols rose 200-600 m above Poás’s vents A (Boca Roja) and B (Boca Azufrada). Minor incandescence from the bottom of the crater was observed during 4-5 July, and a strong sulfur odor was reported in some areas of Alajuela and Heredia. During 5-7 July grayish-red ash emissions rose intermittently from vent A, and on 7 July a loud “jet” sound was noted in Mirador. A strong sulfur odor and minor ashfall was reported in some areas of Alajuela. An event at 1450 on 10 July generated a plume that rose 300 m.

Geological summary: The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Sabancaya, Peru

15.787°S, 71.857°W, Elevation 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya increased compared to the previous week; there was an average of 10 explosions recorded per day during 3-9 July, and the explosions were more energetic. Gas-and-ash plumes rose 5.5 km above the crater rim and drifted more than 50 km NW and S. Sulfur dioxide flux was as high as 2,239 tons per day.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Santa Maria, Guatemala

14.757°N, 91.552°W, Elevation 3745 m

INSIVUMEH reported that on 5 July a moderate lahar descended the Cabello de Ángel drainage, a tributary of the Nimá I river. Near the El Faro estate, the lahar was 30 m wide and 1 m deep, and carried blocks 50 cm in diameter. Weak explosions on 7 July generated white plumes that rose 700 m and drifted 2 km SE; minor ashfall was reported in the ranches of La Florida (5 km S) and Monte Claro (S). Weak avalanches of material traveled short distances down the E flank. Explosions during 10-11 July generated ash plumes that rose 600 m and drifted SW, causing some ashfall in La Florida.

Geological summary: Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

Based on PVMBG observations, satellite images, and wind data, the Darwin VAAC reported that during 6 and 8-11 July ash plumes from Sinabung rose 3.3-5.5 km (11,000-18,000 ft) a.s.l. and drifted E, ESE, SE, and NW.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Turrialba, Costa Rica

10.025°N, 83.767°W, Elevation 3340 m

OVSICORI-UNA reported that during 4-11 July plumes of water vapor, aerosols, and magmatic gases rose as high as 500 m above Turrialba’s crater rim, and on most nights incandescence emanated from Cráter Oeste. The emissions sporadically contained moderate amounts of ash during 5-7 July. Minor ashfall was reported in Coronado (San José), and in San Rafael and Barva (Heredia). Parque Nacional Volcán Turrialba staff reported that ash was deposited in the region between La Silvia and La Picada farms. Events at 1325 on 10 July and 1545 on 11 July generated plumes that rose 300 and 500 m above the crater rim, respectively.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

2 Comments

    1. The Weekly Volcanic Activity Report does not necessarily include all volcanic activity that occurred on Earth during the week. More than a dozen volcanoes globally have displayed more-or-less continuous eruptive activity for decades or longer, and such routine activity is typically not reported here. Moreover, Earth’s sea-floor volcanism is seldom reported even though in theory it represents the single most prolific source of erupted material. The Weekly Volcanic Activity Report summarizes volcanic activity that meets one or more of the following criteria:

      – A volcano observatory raises or lowers the alert level at the volcano.
      – A volcanic ash advisory has been released by a volcanic ash advisory center (VAAC) stating that an ash cloud has been produced from the volcano.
      – A verifiable news report of new activity or a change in activity at the volcano has been issued.
      – Observers have reported a significant change in volcanic activity. Such activity can include, but is not restricted to, pyroclastic flows, lahars, lava flows, dome collapse, or increased unrest.

Leave a reply

Your email address will not be published. Required fields are marked *