·

Powerful, long-duration X2.2 solar flare erupts from geoeffective AR 2673

long-duration-x2-2-x-class-solar-flare-september-6-2017

A powerful, long-duration solar flare measuring X2.2 at its peak time erupted from geoeffective Active Region 2673 at 09:10 UTC on September 6, 2017. The event started at 08:48 and ended at 09:59 UTC. This is the first X-class solar flare since May 5, 2015.

There were no radio signatures that would suggest a Coronal Mass Ejection (CME) was produced during this event.

Additionally, the event was associated with a 10cm Radio Burst lasting 6 minutes with a peak flux of 569 sfu.

X2.2 solar flare September 6, 2017X2.2 solar flare September 6, 2017

X2.2 solar flare September 6, 2017 - SDO AIA 131

X2.2 solar flare September 6, 2017 DRAP

Just a couple of hours later, the same region produced a major X-class solar flare – X9.3, the strongest solar flare of the current solar cycle.

Read more about it: Major X-class flare: X9.3 from geoeffective AR 2673, CME produced

SWPC alerts

Space Weather Message Code: SUMX01
Serial Number: 114
Issue Time: 2017 Sep 06 1008 UTC

SUMMARY: X-ray Event exceeded X1
Begin Time: 2017 Sep 06 0848 UTC
Maximum Time: 2017 Sep 06 0910 UTC
End Time: 2017 Sep 06 0959 UTC
X-ray Class: X2.2

Optical Class: 2b
Location: S08W33
NOAA Scale: R3 – Strong

Potential Impacts: Area of impact consists of large portions of the sunlit side of Earth, strongest at the sub-solar point.
Radio – Wide area blackout of HF (high frequency) radio communication for about an hour.

***

Space Weather Message Code: SUM10R
Serial Number: 696
Issue Time: 2017 Sep 06 0934 UTC

SUMMARY: 10cm Radio Burst
Begin Time: 2017 Sep 06 0903 UTC
Maximum Time: 2017 Sep 06 0904 UTC
End Time: 2017 Sep 06 0909 UTC
Duration: 6 minutes
Peak Flux: 459 sfu
Latest Penticton Noon Flux: 121 sfu

Description: A 10cm radio burst indicates that the electromagnetic burst associated with a solar flare at the 10cm wavelength was double or greater than the initial 10cm radio background. This can be indicative of significant radio noise in association with a solar flare. This noise is generally short-lived but can cause interference for sensitive receivers including radar, GPS, and satellite communications.

Featured image: X2.2 solar flare at 09:13 UTC on September 6, 2017. Credit: NASA/SDO AIA 131

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *