Active volcanoes in the world: June 10 - 16, 2015

Active volcanoes in the world: June 10 - 16, 2015

New activity/unrest was observed at 6 volcanoes from June 10 - 16, 2015. During the same period, ongoing activity was observed at 13 volcanoes. 

New activity/unrest: Asamayama, Honshu (Japan) | Barren Island, Andaman Islands (India) | Concepcion, Nicaragua | Cotopaxi, Ecuador | San Cristobal, Nicaragua  | Sinabung, Indonesia.

Ongoing activity: Aira, Kyushu (Japan) | Bulusan, Luzon (Philippines) | Colima, Mexico | Fuego, Guatemala | Karymsky, Eastern Kamchatka (Russia) | Kerinci, Indonesia | Kilauea, Hawaiian Islands (USA) | Papandayan, Western Java (Indonesia) | Reventador, Ecuador | Sheveluch, Central Kamchatka (Russia) | Shishaldin, Fox Islands (USA) | Ubinas, Peru | Zhupanovsky, Eastern Kamchatka (Russia).

New activity/unrest

Asamayama, Honshu (Japan)
36.406°N, 138.523°E, Summit elev. 2568 m

On 16 June JMA reported that a small-scale eruption from Asama's summit crater generated ashfall to the NE within 4 km of the crater. Scientists aboard an overflight later that day observed gas venting of blue and white plumes. The Alert Level remained at 2 (on a scale of 1-5).

Geologic summary: Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

Barren Island, Andaman Islands (India)
12.278°N, 93.858°E, Summit elev. 354 m

Based on pilot observations, analysis of satellite imagery, and wind data, the Darwin VAAC reported that during 12-13 June ash plumes from Barren Island rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 25-55 km NE.

Geologic summary: Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Concepcion, Nicaragua
11.538°N, 85.622°W, Summit elev. 1700 m

INETER reported that gas explosions continued to be detected at Concepción; by 15 June a total of 1,984 explosions, 309 since 9 June, had been detected by the network since an unspecified date of increased activity.

Geologic summary: Volcán Concepción is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks of the volcano have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepción was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the north flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.

Cotopaxi, Ecuador
0.677°S, 78.436°W, Summit elev. 5911 m

On 11 June IG reported that seismicity at Cotopaxi continued to increase. Tremor began to be detected on 4 June, with periods ranging from 10 to 15 minutes. Amplitudes were highest during 5-6 June. Sulfur dioxide emissions continued to be elevated over baseline levels (which were less than 500 tons/day), detected at values greater than 2,500 tons/day. Low-energy, pulsating gas emissions began on 10 June, and Cotopaxi National Park staff reported an increase of water flow in some streams on the NE flank.

Geologic summary: Symmetrical, glacier-clad Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend as far as the base of Cotopaxi. The modern conical volcano has been constructed since a major edifice collapse sometime prior to about 5000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions of Cotopaxi, and lahars have frequently devastated adjacent valleys. The most violent historical eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. The last significant eruption of Cotopaxi took place in 1904.

San Cristobal, Nicaragua
12.702°N, 87.004°W, Summit elev. 1745 m

INETER reported that at 0907 on 12 June an explosion at San Cristóbal generated a gas-and-ash plume that rose 2 km and drifted SE. An explosion at 1835 produced a gas plume with low ash content; the height of the plume was unable to be determined due to inclement weather. INETER noted that seismicity remained at background levels. Seismic signals detected a lahar between 1850 and 1929; an observer reported that the small lahar descended the W and SW flanks.

Geologic summary: The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Sinabung, Indonesia
3.17°N, 98.392°E, Summit elev. 2460 m

BNPB reported that activity at Sinabung remained high. On 13 June six eruptions generated ash plumes that rose 1-2 km high and pyroclastic flows that traveled as far as 3 km SE. At 2140 about 200 people from Sukanalu village were ordered to evacuate. The report noted that 2,053 families (6,179 people) had been living in temporary shelters since June 2014. The Alert Level remained at 4 (on a scale of 1-4).

Geologic summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical, 2460-m-high andesitic-to-dacitic volcano is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Ongoing activity

Aira, Kyushu (Japan)
31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that incandescence from Showa Crater at Aira Caldera’s Sakurajima volcano was visible at night on 13 June. An explosion occurred at 1007 on 15 June but inclement weather prevented visual observations. The Alert Level remained at 3 (on a 5-level scale).

Geologic summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bulusan, Luzon (Philippines)
12.77°N, 124.05°E, Summit elev. 1565 m

PHIVOLCS reported that at 1102 on 16 June a 10-minute-long phreatic explosion from Bulusan generated a steam-and-ash plume that rose 1 km and drifted WSW. This event was accompanied by rumbling sounds reported by residents in Cogon, Irosin on the WSW flank. A second and smaller event occurred at 1120 and, based on seismicity, lasted for one minute. The Alert Level remained at 1, indicating abnormal conditions and a 4-km radius Permanent Danger Zone (PDZ).

Geologic summary: Luzon's southernmost volcano, Bulusan, was constructed along the rim of the 11-km-diameter dacitic-to-rhyolitic Irosin caldera, which was formed about 36,000 years ago. Bulusan lies at the SE end of the Bicol volcanic arc occupying the peninsula of the same name that forms the elongated SE tip of Luzon. A broad, flat moat is located below the topographically prominent SW rim of Irosin caldera; the NE rim is buried by the andesitic Bulusan complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit of 1565-m-high Bulusan volcano is unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded at Bulusan since the mid-19th century.

Colima, Mexico
19.514°N, 103.62°W, Summit elev. 3850 m

The Washington VAAC reported that a possible ash plume from Colima was recorded by a webcam on 15 June.

Geologic summary: The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Fuego, Guatemala
14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that at 1830 on 12 June the seismic stations at Fuego detected a lahar. At 1930 a lahar, 25 m wide and 2-3 m deep, traveled S down the Trinidad drainage, carrying abundant volcanic material and blocks 1-2 m in diameter. During 13-16 June explosions generated ash plumes that rose 550-850 m above the crater and drifted 10-12 km WNW, W, SW, and S. Shock waves were detected, and incandescent tephra was ejected 50 m above the crater. Ash fell in areas downwind including La Soledad, Acatenango, and Sacatepéquez.

Geologic summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Karymsky, Eastern Kamchatka (Russia)
54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that explosive activity at Karymsky likely continued during 5-12 June. Satellite images detected a thermal anomaly during 6 and 8-10 June, and ash clouds that drifted as far as 50 km SE during 8-9 June. The Aviation Color Code remained at Orange.

Geologic summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kerinci, Indonesia
1.697°S, 101.264°E, Summit elev. 3800 m

PVMBG reported that during May-8 June 2015 white plumes from Kerinci rose 50-100 m and drifted E. Seismicity was dominated by signals indicating emissions (100-110 per day on average) as well as volcanic earthquakes (1 per day on average). The Alert Level remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 3 km of the summit.

Geologic summary: The 3800-m-high Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. Kerinci is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. The volcano contains a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit of Kerinci. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. The frequently active Gunung Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Kilauea, Hawaiian Islands (USA)
19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that seismicity beneath Kilauea's summit, upper East Rift Zone, and Southwest Rift Zone was at background levels during 10-16 June. The lava lake continued to be active in the deep pit within the Overlook vent, vigorously spattering. The June 27th NE-trending lava flow continued to be active with surface flows within 8 km NE of Pu'u 'O'o.

Geologic summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions of Kilauea are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Papandayan, Western Java (Indonesia)
7.32°S, 107.73°E, Summit elev. 2665 m

PVMBG reported that during 1-11 June shallow volcanic earthquakes at Papandayan occurred at an average rate of 26 events/day. Visual monitoring occurred from the Pakuwon Village post; observers noted white plumes rising at most 50 m above the crater. The Alert Level remained at 2 (on a scale of 1-4); residents and tourists were reminded not to approach the craters within a 1-km radius.

Geologic summary: Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the north gives the volcano a twin-peaked appearance. Several episodes of collapse have given the volcano an irregular profile and produced debris avalanches that have impacted lowland areas beyond the volcano. A sulfur-encrusted fumarole field occupies historically active Kawah Mas ("Golden Crater"). After its first historical eruption in 1772, in which collapse of the NE flank produced a catastrophic debris avalanche that destroyed 40 villages and killed nearly 3000 persons, only small phreatic eruptions had occurred prior to an explosive eruption that began in November 2002.

Reventador, Ecuador
0.077°S, 77.656°W, Summit elev. 3562 m

During 10-16 June IG reported moderate seismic activity including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions at Reventador; cloud cover sometimes prevented visual observations. On 10 June a steam-and-ash plume rose 1 km above the crater. On 12 June an ash plume rose 1 km and drifted SW. The lava flow on the SW flank was visible in thermal images. A steam-and-ash plume rose 1 km and drifted NW on 14 June, and a vapor-and-ash emission drifted W on 16 June.

Geologic summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Sheveluch, Central Kamchatka (Russia)
56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that during 5-12 June lava-dome extrusion onto Sheveluch’s N flank was accompanied by fumarolic activity. A thermal anomaly was detected daily in satellite images. The Aviation Color Code remained at Orange.

Geologic summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Shishaldin, Fox Islands (USA)
54.756°N, 163.97°W, Summit elev. 2857 m

AVO reported that seismicity at Shishaldin continued to be elevated over background levels 10-16 June indicating that low-level eruptive activity confined to the summit crater likely continued. Elevated surface temperatures were periodically detected in satellite images, and minor steaming was recorded by the webcam. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geologic summary: The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Ubinas, Peru
16.355°S, 70.903°W, Summit elev. 5672 m

Instituto Geofísico del Perú (IGP) Observatorio Volcanológico del Sur (OVS) reported that during 9-16 June the number of long-period earthquakes greatly decreased to 62 events/day from 778 events/day the previous week. Volcano-tectonic events continued to occur at a high rate. Periods of constant ash emissions during 9-11 June rose as high as 1.4 km above the crater base and drifted mainly NE, E, and SE. Sporadic pulses of gas and ash on 12 June rose 800 m. A hybrid event was recorded at 1915 on 13 June; six hours later a thermal anomaly was detected by satellite images. Another thermal anomaly was detected on 16 June.

Geologic summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Zhupanovsky, Eastern Kamchatka (Russia)
53.589°N, 159.15°E, Summit elev. 2899 m

KVERT reported that explosive activity at Zhupanovsky continued during 5-12 June; ash plumes rose to an altitude of 6 km (a.s.l.) during 7-9 June. Satellite images showed a thermal anomaly over the volcano during 8-9 June, and ash clouds drifting 250 km SE on 9 June. The Aviation Color Code remained at Orange.

Geologic summary: The Zhupanovsky volcanic massif consists of four overlapping stratovolcanoes along a WNW-trending ridge. The elongated volcanic complex was constructed within a Pliocene-early Pleistocene caldera whose rim is exposed only on the eastern side. Three of the stratovolcanoes were built during the Pleistocene, the fourth is Holocene in age and was the source of all of Zhupanovsky's historical eruptions. An early Holocene stage of frequent moderate and weak eruptions from 7000 to 5000 years before present (BP) was succeeded by a period of infrequent larger eruptions that produced pyroclastic flows. The last major eruption took place about 800-900 years BP. Historical eruptions have consisted of relatively minor explosions from the third cone.

Source: GVP

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar