The Weekly Volcanic Activity Report: March 31 – April 6, 2021

the-weekly-volcanic-activity-report-march-31-april-6-2021

New activity was reported for 6 volcanoes from March 31 to April 6, 2021. During the same period, ongoing activity was reported for 17 volcanoes.

New activity/unrest: Karymsky, Eastern Kamchatka (Russia) | Krysuvik-Trolladyngja, Iceland | Pacaya, Guatemala | Semisopochnoi, Aleutian Islands (USA) | Suwanosejima, Ryukyu Islands (Japan) | Veniaminof, United States.

Ongoing activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Etna, Sicily (Italy) | Gareloi, United States | Kilauea, Hawaiian Islands (USA) | Langila, New Britain (Papua New Guinea) | Lewotolok, Lembata Island (Indonesia) | Merapi, Central Java (Indonesia) | Raung, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Shishaldin, Fox Islands (USA) | Sinabung, Indonesia | Soufriere St. Vincent, St. Vincent | Tanaga, Andreanof Islands (USA) | Tengger Caldera, Eastern Java (Indonesia) | Ubinas, Peru.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network.

New activity/unrest

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that explosions at 1130 on 3 April likely caused ash plumes to rise to 8.5 km (27,900 ft) a.s.l. above Karymsky and drift NE, based on satellite data. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Krysuvik-Trolladyngja, Iceland

63.917°N, 22.067°W, Summit elev. 360 m

IMO reported that the small eruption in the W part of the Krýsuvík-Trölladyngja volcanic system, close to Fagradalsfjall on the Reykjanes Peninsula, continued during 31 March-6 April. Video and visitor photographs showed spattering and lava fountaining from the two cones, and lava flows from both cones moved W and S within the Geldingadalur valley. A new fissure, 100-200 m long, opened about 700 m NE of the Geldingadalur cones around noon on 5 April. During a helicopter overflight, scientists observed a gas plume rising from the new fissure and a fast-moving lava flow descending into the Meradalir valley to the SE. On 6 April lava from the second fissure was advancing at a rate of 7 cubic meters per second; lava-flow rates at the Geldingadalir site averaged 5.5 cubic meters per second. Around midnight during 6-7 April a third fissure opened in between the first two; all three were oriented NE-SW. Earlier on 6 April field teams had observed a landslide in same area. Lava from the third fissure mostly flowed SW into Geldingadalur. The Aviation Color Code remained Orange due to the lack of ash and tephra emissions.

Geological summary: The Krýsuvík-Trölladyngja volcanic system is described by the Catalogue of Icelandic Volcanoes as an approximately 50-km-long composite fissure swarm trending about N38°E, including a 30-km-long swarm of fissures, with no central volcano. It is one of the volcanic systems arranged en-echelon along the Reykjanes Peninsula west of Kleifarvatn lake. The Fagradalsfjall and Krýsuvík fissure swarms are considered splits or secondary swarms of the Krýsuvík–Trölladyngja volcanic system. Small shield volcanoes have produced a large portion of the erupted volume within the system. Several eruptions have taken place since the settlement of Iceland, including the eruption of a large basaltic lava flow from the Ogmundargigar crater row around the 12th century. The latest eruption, identified through tephrochronology, took place during the 14th century.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH reported that explosions at Pacaya’s Mackenney Crater during 30-31 March produced gas-and-ash plumes that rose 1.8 km above the summit and drifted up to 50 km S, SW, W, and NW. Explosions ejected blocks as high as 150 m above the summit. Lava flows on the W flank advanced to 3 km long and were near La Breña; the flows overtook an unoccupied building on the Campo Alegre farm that was used for monitoring and visitor services. The flow front was about 500 m from the town of El Patrocinio. Incandescent blocks detached from the end of the lava flow and set fire to vegetation. During 31 March-2 April explosions ejected incandescent blocks as high as 225 m above the summit. Ash plumes rose 500 m and drifted 20 km S and SW. The SW-flank lava flows remained active. Explosions continued during 3-6 April, with ash plumes rising as high as 1 km and drifting 6-20 km W, SW, and S. The lava flow continued to be active on the SW flank, setting fire to local vegetation. Strombolian activity ejected material 300 m high during 5-6 April.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Semisopochnoi, Aleutian Islands (USA)

51.93°N, 179.58°E, Summit elev. 1221 m

AVO reported that a small plume from Semisopochnoi’s North Cerberus crater was visible in a satellite image on 31 March. Steam obscured the crater during the first part of 1 April. Later that day an ash plume was visible, and was followed by a sulfur dioxide plume an hour later. At 2200 a plume rose to an altitude below 3 km (10,000 ft) a.s.l. No activity was identified in partly cloudy images during 2-6 April. The Aviation Color Code and the Volcano Alert Level remained at Orange and Watch, respectively.

Geological summary: Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank of Cerberus appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that during 30-31 March large volcanic bombs were ejected at least 41 times from Suwanosejima's Ontake Crater as high as 800 m above the crater rim and to distances as far as 1 km. The Alert Level was raised to 3 (on a 5-level scale) at 0330 on 31 March and the public was warned to stay outside a 2 km radius of the crater. The increased activity prompted an overflight that same day where scientists confirmed several hundred high-temperature bomb deposits with a thermal camera within a 1 km radius. Explosions at 2205 on 30 March and 0257 on 31 March ejected bombs onto the S and SE flanks, respectively. Grayish-white emissions rose from the crater. After 1500 eruption plumes rose as high as 1.4 km above the crater rim. The number of explosions decreased; two per day were recorded during 1-2 April and one was recorded on 3 April. The Alert Level was lowered to 2 on 5 April and the public was warned to stay 1 km away from the crater.

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Veniaminof, United States

56.17°N, 159.38°W, Summit elev. 2507 m

AVO reported that during 31 March-1 April clear satellite and web camera images of Veniaminof showed no signs of emissions. On 2 April the Volcano Alert Level was lowered to Advisory and the Aviation Color Code was lowered to Yellow. Satellite data showed elevated surface temperatures, especially over the flank-vent lava flows through 4 April. Low-level ash emissions were recorded by the webcam on 5 April, prompting AVO to raise the Volcano Alert Level and Aviation Color Code to Watch and Orange, respectively. Tephra deposits were visible to the SE.

Geological summary: Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that during 29-30 March explosions at Minamidake Crater (at Aira Caldera's Sakurajima volcano) produced ash plumes that rose as high as 2.7 km above the crater rim and ejected bombs 600-900 m away. An explosion was recorded on 4 April. An explosion at 0641 on 5 April ejected bombs 800-1,100 m away from the crater and generated an ash plume that rose up to 3 km above the crater rim. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite and wind model data, the Darwin VAAC reported that during 31 March-6 April ash plumes from Dukono rose to 2.4 km (8,000 ft) a.s.l. and drifted E, SE, and SSE. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 25 and 28-29 March that sent ash plumes up to 2.5 km a.s.l. (8,200 ft) and drifted in different directions. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Etna, Sicily (Italy)

37.748°N, 14.999°E, Summit elev. 3320 m

INGV reported continuing episodes of lava fountaining, intra-crater explosive activity, and discontinuous ash emissions at Etna’s Southeast Crater (SEC) during the week of 29 March-4 April, though weather conditions often prevented visual observations. Gas emissions rose from the other summit craters and occasional explosive activity was visible; puffs of ash sometimes rose from Voragine Crater during 31 March-2 April.

At 0707 on 31 March a loud explosion was followed by several ash puffs, marking the beginning of the 17th lava-fountaining episode since they began on 16 February. At around 1100 a thermal anomaly at the S base of SEC was visible during an overflight and in thermal camera images. Explosive activity increased by late afternoon and several lava flows effused from the S-base vent. The main part of the flow traveled towards the Valle del Bove with other smaller flows traveled S and SW. Two other vents at the S base had opened by evening and one ejected spatter a few tens of meters high. Periods of lava fountaining began through the night, and the main lava flow descended the W wall of the Valle del Bove. Strombolian activity intensified at 1950, with an eruption plume that rose to 1.2 km (4,000 ft) a.s.l. and drifted SSW. Lava fountaining began at around 0100 on 1 April. At 0218 lava overflowed the E rim of SEC and headed towards the Valle del Bove, running parallel to the flows from the S base.

Lava fountains continued to be visible during the morning of 1 April and intense Strombolian activity produced dense ash plumes that drifted S. By 0940 the eruption plume had risen to 9 km (29,500 ft) a.s.l. and drifted SSW. Lava fountaining ceased around 1000 and the eruption plume rose to 5.5 km (18,000 ft) a.s.l. and drifted S. Ash fell in Milia, Nicolosi, and Catania and lapilli (1 cm in diameter) fell in Rifugio Sapienza. Lava effusion and flow advancement continued; lava from the S base of SEC spread out like a fan. A series of loud bangs were audible in the late morning and ash emissions continued until the afternoon. Lava overflowed the E rim of SEC at 1040, and a SSE flow entered the Valle del Bove at the SW wall. Explosive activity began to decline at 1320, and effusive activity waned overnight during 1-2 April.

Geological summary: Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Gareloi, United States

51.79°N, 178.794°W, Summit elev. 1573 m

AVO reported that a loss of operation and communication with all seismic stations on Gareloi was likely due to snow cover. Both the Aviation Color Code and the Volcano Alert Level were changed to Unassigned, reflecting the lack of this data to detect unrest. The observatory noted that regional infrasound networks, lightning detection, and satellite images will be used to monitor and detected unrest.

Geological summary: The 8 x 10 km Gareloi Island, the northernmost volcano of the Delarof Group at the western end of the Andreanof Islands, consists of a stratovolcano with two summits and a prominent SE-trending fissure. The fissure was formed during an eruption in 1929 and extends from the southern summit to the sea. Steep sea cliffs that are cut into rocks of an older, eroded center are found on the SW coast, and submarine deposits of three debris avalanches produced by edifice collapse are found offshore. Young lava flows cover the older volcano from the summit to the coast along three broad axes trending NW, ENE, and S. The 1929 eruption originated from 13 craters along a 4-km-long fissure. Phreatic explosions were followed by the ejection of glassy pumice, lapilli, scoria, and older blocks, as well as by the emission of four short, steep lava flows, one of which reached the SE coast.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 31 March-6 April. Lava flowed at a low rate from the main vent into the lake through crusted-over channels and submerged inlets. The total depth of the lake measured about 225 m and lava continued to circulate in the W part; the E half of the lake remained solidified and expanded toward the W. The sulfur dioxide emission rate was 1,200 tons/day on 1 April. HVO field crews observed weak spattering from two areas at the W vent during 1-2 April. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Summit elev. 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that on 5 April an ash plume from Langila rose to 1.5 km (5,000 ft) a.s.l. and drifted SW.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Lewotolok, Lembata Island (Indonesia)

8.274°S, 123.508°E, Summit elev. 1431 m

PVMBG reported that the Strombolian eruption at Lewotolok continued during 30 March-6 April. Gray-and-white ash plumes rose as high as 700 m above the summit and drifted in multiple directions, though rainy weather conditions prevented visual observations during 2-3 and 5 April. Incandescent material was ejected 300-500 m above the summit and 500 m SE during 30-31 March; eruptive events were recorded by the seismic network on the other days but not visually confirmed. Rumbling was occasionally noted. According to news articles secondary lahars from Cyclone Seroja destroyed homes, and impacted as many as 300, in several villages to the SW; mud-and-debris flows and flooding severely impacted other parts of Indonesia and killed at least 70 people. The Alert Level remained at 3 (on a scale of 1-4) and the public was warned to stay 4 km away from the summit crater.

Geological summary: The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

BPPTKG reported that the lava dome just below Merapi’s SW rim and the lava dome in the summit crater both continued to grow during 26 March-1 April. The SW rim lava-dome volume was an estimated 1,060,000 cubic meters on 1 April, with a growth rate of about 13,400 cubic meters per day, and continued to shed material down the flank. A total of 14 pyroclastic flows traveled a maximum of 1.8 km down the SW flank. Incandescent avalanches, recorded 158 times, traveled as far as 1.1 km down the SW flank. The summit lava dome had grown to 70 m tall and produced one incandescent avalanche. Minor ashfall was reported in Ngadirojo, Stabelan (4 km NW), Takeran, Tlogolele (5 km NW), Selo (3 km NNW), Pos Babadan (4 km NW), and Pasar Talun (12 km W). The Alert Level remained at 3 (on a scale of 1-4), and the public was warned to stay 5 km away from the summit.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Raung, Eastern Java (Indonesia)

8.119°S, 114.056°E, Summit elev. 3260 m

PVMBG reported that daily gray-and-white ash plumes rose 50-500 m above Raung's summit during 31 March-5 April and drifted N and S. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 28 March-2 April. On 3 April a plume of re-suspended ash rose to 2.5 km (8,200 ft) a.sl. and drifted 250 km ESE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Shishaldin, Fox Islands (USA)

54.756°N, 163.97°W, Summit elev. 2857 m

AVO reinstated the Green Aviation Color Code and the Normal Volcano Alert Level for Shishaldin on 2 April, after several seismic stations again became operational following a months-long outage, thus improving the observatory’s monitoring capability.

Geological summary: The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Sinabung, Indonesia

3.17°N, 98.392°E, Summit elev. 2460 m

PVMBG reported that the eruption at Sinabung continued during 31 March-6 April. Weather conditions sometimes prevented visual observations of the volcano, though daily white fumarolic plumes were visible rising as high as 500 m above the summit. Avalanches were detected daily by the seismic network and observed traveling 500-1,500 m down the E and SE flanks. An eruptive event produced a gray ash plume that rose 500 m above them summit on 1 April. Pyroclastic flows went as far as 1.5 km down the E and SE flanks. Ash plumes rose 0.7-2 km during 2-5 April and mainly drifted E and SE. The Alert Level remained at 3 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions to 5 km in the SE sector and 4 km in the NE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Soufriere St. Vincent, St. Vincent

13.33°N, 61.18°W, Summit elev. 1220 m

University of the West Indies Seismic Research Centre (UWI-SRC) and National Emergency Management Organisation (NEMO) reported that the lava dome in Soufrière St. Vincent’s main crater continued to slowly grow during 31 March-6 April, expanding to the N and S. Gas-and-steam continued to rise from the top of the dome, as well as along the contact with the pre-existing 1979 dome. A swarm of volcano-tectonic (VT) earthquakes began at 0638 on 5 April. The number and frequency of the VTs increased until about 0830 and then stabilized. The rate declined at around 1400 and then significantly dropped at 1600, though small VT events continued to be detected through 1800. The events were located at depths of 6 km, slightly deeper than the swarm events recorded during 22-25 March, located at revised depths of 3-5 km. Several reports of felt events came from nearby communities, including Fancy and Chateaubelair. The largest event, a M 3.5, was recorded at 0920 and felt by local residents. The swarm was more intense than the previous one, with an average rate of about 50 earthquakes per hour compared with 1.5 per hour during 22-25 March. The Alert Level remained at Orange (the second highest level on a four-color scale).

Geological summary: Soufrière St. Vincent is the northernmost and youngest volcano on St. Vincent Island. The NE rim of the 1.6-km wide summit crater is cut by a crater formed in 1812. The crater itself lies on the SW margin of a larger 2.2-km-wide caldera, which is breached widely to the SW as a result of slope failure. Frequent explosive eruptions after about 4,300 years ago produced pyroclastic deposits of the Yellow Tephra Formation, which cover much of the island. The first historical eruption took place in 1718; it and the 1812 eruption produced major explosions. Much of the northern end of the island was devastated by a major eruption in 1902 that coincided with the catastrophic Mont Pelée eruption on Martinique. A lava dome was emplaced in the summit crater in 1971 during a strictly effusive eruption, forming an island within a lake that filled the crater. A series of explosive eruptions in 1979 destroyed the 1971 dome and ejected the lake; a new dome was then built.

Tanaga, Andreanof Islands (USA)

51.885°N, 178.146°W, Summit elev. 1806 m

AVO reported a loss of operation and communication with all but two seismic stations on Tanaga, likely caused by snow cover. Both the Aviation Color Code and the Volcano Alert Level were changed to Unassigned, reflecting the inability to locate earthquakes to detect unrest. Monitoring will continue with the remaining seismic stations, regional infrasound networks, lightning detection, and satellite images.

Geological summary: Tanaga volcano, the second largest volcanic center of the central Aleutians, is the central and highest of three youthful stratovolcanoes oriented along a roughly E-W line at the NW tip of Tanaga Island. Ridges to the east and south represent the rim of an arcuate caldera formed by collapse of an ancestral edifice during the Pleistocene. Most Holocene eruptions originated from Tanaga volcano itself, which consists of two large cones, the western of which is the highest, constructed within a caldera whose 400-m-high rim is prominent to the SE. At the westernmost end of the complex is conical Sajaka, a double cone that may be the youngest of the three volcanoes. Sajaka One volcano collapsed during the late Holocene, producing a debris avalanche that swept into the sea, after which the Sajaka Two cone was constructed within the collapse scarp.

Tengger Caldera, Eastern Java (Indonesia)

7.942°S, 112.95°E, Summit elev. 2329 m

PVMBG reported that during 30 March-5 April white steam-and-gas plumes rose 50-700 m above the summit of Tengger Caldera’s Bromo cone. The plumes were white to gray during 1-2 April. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay outside of a 1-km radius of the crater.

Geological summary: The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Ubinas, Peru

16.355°S, 70.903°W, Summit elev. 5672 m

Instituto Geofísico del Perú (IGP) reported that during 29 March-4 April there were 11 volcano-tectonic earthquakes at Ubinas with magnitudes less than 1.8, and a few seismic signals indicated emissions. Sporadic steam-and-gas plumes rose as high as 200 m above the crater rim. On 5 April the Alert Level was lowered to Green (the lowest level on a four-color scale).

Geological summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Perú's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one of Holocene age about 1,000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *