Geophysicists challenge traditional theory underlying the origin of mid-plate volcanoes

Source of volcanoes may be much closer than scientists thought…
A long-held assumption about the Earth is discussed in today's edition of Science, as Don L. Anderson, an emeritus professor with the Seismological Laboratory of the California Institute of Technology, and Scott King, a professor of geophysics in the College of Science at Virginia Tech, look at how a layer beneath the Earth's crust may be responsible for volcanic eruptions.
The discovery challenges conventional thought that volcanoes are caused when plates that make up the planet's crust shift and release heat.
Instead of coming from deep within the interior of the planet, the responsibility is closer to the surface, about 80 kilometers to 200 kilometers deep — a layer above the Earth's mantle, known as the asthenosphere.
Traditional thought holds that hot updrafts from the Earth's core cause volcanoes, but researchers say eruptions may stem from the asthenosphere, a layer closer to the surface. Image credit: Virginia Tech
"For nearly 40 years there has been a debate over a theory that volcanic island chains, such as Hawaii, have been formed by the interaction between plates at the surface and plumes of hot material that rise from the core-mantle boundary nearly 1,800 miles below the Earth's surface," King said. "Our paper shows that a hot layer beneath the plates may explain the origin of mid-plate volcanoes without resorting to deep conduits from halfway to the center of the Earth."
Traditionally, the asthenosphere has been viewed as a passive structure that separates the moving tectonic plates from the mantle.
As tectonic plates move several inches every year, the boundaries between the plates spawn most of the planet's volcanoes and earthquakes.
"As the Earth cools, the tectonic plates sink and displace warmer material deep within the interior of the Earth," explained King. "This material rises as two broad, passive updrafts that seismologists have long recognized in their imaging of the interior of the Earth."
The work of Anderson and King, however, shows that the hot, weak region beneath the plates acts as a lubricating layer, preventing the plates from dragging the material below along with them as they move.
The researchers show this lubricating layer is also the hottest part of the mantle, so there is no need for heat to be carried up to explain mid-plate volcanoes.
"We're taking the position that plate tectonics and mid-plate volcanoes are the natural results of processes in the plates and the layer beneath them," King said.
Source: VirginiaTech
Featured image: Flowing rock by Paul Bica (CC via Flickr)
If you value what we do here, create your ad-free account and support our journalism.
Your support makes a difference
Dear valued reader,
We hope that our website has been a valuable resource for you.
The reality is that it takes a lot of time, effort, and resources to maintain and grow this website. We rely on the support of readers like you to keep providing high-quality content.
If you have found our website to be helpful, please consider making a contribution to help us continue to bring you the information you need. Your support means the world to us and helps us to keep doing what we love.
Support us by choosing your support level – Silver, Gold or Platinum. Other support options include Patreon pledges and sending us a one-off payment using PayPal.
Thank you for your consideration. Your support is greatly appreciated.
Sincerely,
Teo Blašković
I thought it was the devil pokin his way up