The Weekly Volcanic Activity Report: February 24 – March 2, 2021

the-weekly-volcanic-activity-report-february-24-march-2-2021

New activity/unrest was reported for 6 volcanoes from February 24 to March 2, 2021. During the same period, ongoing activity was reported for 16 volcanoes.

New activity/unrest: Etna, Sicily (Italy) | Klyuchevskoy, Central Kamchatka (Russia) | Krysuvik, Iceland | Kuchinoerabujima, Ryukyu Islands (Japan) | Pacaya, Guatemala | Sinabung, Indonesia.

Ongoing activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Ibu, Halmahera (Indonesia) | Kilauea, Hawaiian Islands (USA) | Kirishimayama, Kyushu (Japan) | Lewotolok, Lembata Island (Indonesia) | Merapi, Central Java (Indonesia) | Raung, Eastern Java (Indonesia) | Sangay, Ecuador | Santa Maria, Guatemala | Semeru, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Soufriere St. Vincent, St. Vincent | Suwanosejima, Ryukyu Islands (Japan).

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network.

New activity/unrest

Etna, Sicily (Italy)

37.748°N, 14.999°E, Summit elev. 3320 m

INGV reported continuing episodes of lava fountaining at Etna’s Southeast Crater (SEC) and 24 and 28 February. Strombolian activity at two vents in SEC increased during the late afternoon of 24 February. Lava overflowed the crater at 1820 and headed ESE towards the Valle de Bove. During 1900-2122 lava fountains rose as high as 500 m above the summit. A second lava flow traveled SW, and at 2100 a pyroclastic flow descended 1 km into the Valle de Bove. An eruption plume rose as high as 11 km a.s.l.

Weak Strombolian activity was visible at 0810 on 28 February. Lava fountaining began at 0839, feeding lava flows that traveled E, and abruptly intensified at 0902 with jets of lava rising 700 m above the crater rim. An eruption plume rose as high as 11 km a.s.l. and drifted ESE, causing ashfall in areas downwind. A small lava overflow at the S part of SEC began at 0909, followed by a pyroclastic flow at 0920. Lava fountaining ended at 0933, though the lava flow descending E remained active.

Geological summary: Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Summit elev. 4754 m

KVERT reported that the eruption at two vents on Klyuchevskoy’s lower NW flank continued during 24-26 February. Both vents produced lava flows and ejected lava 50 m high. A cinder cone had formed over the higher vent. A bright thermal anomaly over the vents was identified in satellite images. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Krysuvik, Iceland

63.883°N, 22.083°W, Summit elev. 360 m

IMO reported that seismicity in the area between Krýsuvík and Reykjanes-Svartsengi volcanic systems remained elevated during 26 February-1 March. More than 6,000 earthquakes had been detected after a M 5.7 event was recorded at 1005 on 24 February; two of those events were above M 5. The earthquakes were distributed over a 25-km-long section of a N-S striking fault along the E-W striking plate boundary, primarily located between Keilir and Fagradalsfjall. GPS data showed 4 cm of horizontal displacement near the epicenter of the M 5.7 event. An InSAR interferogram showed left-lateral movement over a large section of the plate boundary. Tremor began to be recorded by several stations at 1425 on 3 March, in an area located 2 km SW of Keilir. The signals possibly indicated magma rising towards the surface and prompted IMO to raise the Aviation Color Code for Krýsuvík to Orange.

Geological summary: The Krysuvík volcanic system (also spelled Krisuvik) consists of a group of NE-SW-trending basaltic crater rows and small shield volcanoes cutting the central Reykjanes Peninsula west of Kleifarvatn lake. Several eruptions have taken place since the settlement of Iceland, including the eruption of a large lava flow from the Ogmundargigar crater row around the 12th century. The latest eruption took place during the 14th century.

Kuchinoerabujima, Ryukyu Islands (Japan)

30.443°N, 130.217°E, Summit elev. 657 m

JMA reported that the number of volcanic earthquakes located at shallow depths beneath Kuchinoerabujima’s Shindake Crater increased on 21 February and remained elevated. The Alert Level was raised to 3 (the middle level on a scale of 1-5) on 28 February. No other monitoring data showed upward trends and no surficial changes were visible; sulfur dioxide emissions remained low at 60 tons per day on 24 February.

Geological summary: A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH and CONRED reported that during 23-25 February explosions at Pacaya’s Mackenney Crater ejected incandescent material as high as 200 m. A lava flow, originating from a vent 300 m below the summit crater, was about 1.1 km long and produced incandescent blocks from the flow front that descended 300 m. more intense pulses of activity at the summit produced dense ash plumes that drifted more than 30 km S and SW. Ashfall was noted in areas downwind including Los Pocitos, Pacaya, El Rodeo, and El Patrocinio. Explosions continued during 26-29 February, although weather conditions sometime prevented visual confirmation.

RSAM data values notably increased during the morning of 1 March, reflecting an increase in Strombolian activity. Moderate-to-strong explosions ejected ballistics as high as 500 m above the summit. Ash plumes rose 1 km above the summit and drifted W and SW, causing ashfall at least in El Patrocinio. Incandescent material was ejected 150 m high, and ash plumes drifted W; ashfall was reported in El Patrocinio. The lava flow on the SSW flank was about 700 m long. On 2 March gas and ash plumes rose 150 m and drifted 2 km S. A lava flow on the SSW flank was 150 m long.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Sinabung, Indonesia

3.17°N, 98.392°E, Summit elev. 2460 m

PVMBG reported that the eruption at Sinabung continued during 24 February-2 March. White plumes rose as high as 500 m above the summit most days. On 25 February avalanches of material traveled 500-1,000 m down the E, SE, and S flanks. The Darwin VAAC noted that an ash plume rose to 4 km (13,000 ft) a.s.l., or 1.5 km above the summit, and drifted SE, based on satellite images and information from PVMBG. On 28 February avalanches of material traveled 1,000-1,250 m down the E, SE, and S flanks; the VAAC noted that ash plumes were visible in satellite images and rose to 3.4 km (11,000 ft) a.s.l. (about 1 km above the summit) and drifted SW. On 1 March avalanches of material descended the E, SE, and S flanks as far as 1.3 km.

A series of lava-dome collapses began at 0642 on 2 March. A total of 13 pyroclastic flows, each lasting between about two and eight minutes, traveled 2-5 km SE and E. Ash plumes rose 4-5 km along the length of the pyroclastic flows and drifted W, SW, S, and E. The VAAC reported that ash plumes were visible in satellite images beginning at 0640 rising to 4.3 km (14,000 ft) a.s.l. and drifting SW. Ash plumes rose to 7.6 km (25,000 ft) a.s.l. and drifted W by 0758; within another 25 minutes the plumes had risen to 12.2 km (40,000 ft) a.s.l. According to BNPB ashfall was noted in 17 villages in the Tiganderket District, eight villages in the Kutabuluh District, and 15 villages in the Tigabinaga District. The Alert Level remained at 3 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions to 5 km in the SE sector and 4 km in the NE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that during 22 February-1 March incandescence from Minamidake Crater (at Aira Caldera’s Sakurajima volcano) was visible nightly. Three explosions and four non-explosive events generated eruption plumes that rose as high as 2.6 km above the crater rim and ejected bombs 0.6-1.3 km away from the crater. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

PVMBG reported that during 23-28 February ash plumes from Dukono rose 100-500 m above the summit and drifted SE and E. Weather conditions prevented visual observations during 1-2 March. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 19-26 February that sent ash plumes to 3.6 km (11,800 ft) a.s.l. and drifted E and SE. Ashfall was reported in Severo-Kurilsk on 20 February and a thermal anomaly was identified in satellite images that same day. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that 5-15 explosions were recorded per hour during 23 February-2 March at Fuego, generating ash plumes as high as 1.1 km above the crater rim. Shock waves rattled buildings around the volcano. Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Ashfall was reported on most days in several areas downwind including Morelia (9 km SW), Panimaché I (8 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), and San Pedro Yepocapa (8 km NW). Incandescent material was ejected 100-400 m above the summit almost daily. Curtains of old ash deposits remobilized by strong winds were observed during 26-27 February.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

PVMBG reported that during 24 February-2 March gray-and-white ash plumes from Ibu rose 200-800 m above the summit and drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that a vent on the inner NW wall of Kilauea’s Halema`uma`u Crater continued to supply the lava lake during 24 February-2 March. The depth of the western part of the lake deepened from 217 to 219 m. Lava effused from a submerged vent and rapidly developed a thin crust as it flowed E towards the main stagnant island. The crust occasionally overturned at “plate” boundaries, and lava rarely overflowed onto the sloped margins of the lake. The E half of the lake remained solidified; the crusted area expanded towards the W. The sulfur dioxide emission rate was 700-1,100 tons/day during 25-26 February and 1 March.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Kirishimayama, Kyushu (Japan)

31.934°N, 130.862°E, Summit elev. 1700 m

JMA lowered the Alert Level for Kirishimayama to 1 (on a scale of 1-5) on 1 March. The number of volcanic earthquakes had increased in late December 2020 but then began to decline in January 2021 and continued the downward trend through February. No other observation data showed signs of unrest.

Geological summary: Kirishimayama is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene dominantly andesitic group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located Karakunidake being the highest. Onamiike and Miike, the two largest maars, are located SW of Karakunidake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Miike to Ohachi, and at Shinmoedake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century.

Lewotolok, Lembata Island (Indonesia)

8.274°S, 123.508°E, Summit elev. 1431 m

PVMBG reported that the eruption at Lewotolok continued during 24 February-2 March; weather conditions sometimes hindered visual observations. Gray-and-white ash plumes rose 100-700 m above the summit and drifted N, E, SE, and W. The Alert Level remained at 3 (on a scale of 1-4) and the public was warned to stay 4 km away from the summer crater.

Geological summary: The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

BPPTKG reported that the 2021 lava dome just below Merapi’s SW rim and the new lava dome in the summit crater both continued to grow during 19-25 February. The 2021 lava-dome volume was an estimated 618,700 cubic meters on 25 February, with a growth rate of about 13,600 cubic meters per day. A total of three pyroclastic flows traveled 1.9 km down the SW flank. One of the three, recorded at 1652 on 25 February, was followed by minor ashfall in Kali Tengah Lor, Kali Tengah Kidul, Deles, and Tlukan. The Alert Level remained at 3 (on a scale of 1-4), and the public were warned to stay 5 km away from the summit.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Raung, Eastern Java (Indonesia)

8.119°S, 114.056°E, Summit elev. 3260 m

PVMBG reported that daily gray ash plumes rose 200-1,200 m above Raung’s summit during 24 February-2 March. Ash plumes were sometimes dense and drifted mainly N, E, and S. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Sangay, Ecuador

2.005°S, 78.341°W, Summit elev. 5286 m

IG reported a high level of activity at Sangay during 24 February-2 March. Seismicity was characterized by 3-254 daily explosions, long-period earthquakes, and signals indicating emissions. Weather clouds often prevented visual observations of the volcano, but the Washington VAAC recorded almost daily ash plumes that rose as high as 1.5 km above the summit and drifted mainly NW, W, and SW. A seismic station possibly recorded a lahar on 25 February.

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Santa Maria, Guatemala

14.757°N, 91.552°W, Summit elev. 3745 m

INSIVUMEH reported that during 23 February-2 March explosions at Santa María's Santiaguito lava-dome complex generated ash plumes that rose as high as 1 km above the complex. Collapses of blocky lava from the Caliente dome sent avalanches mainly down the SW flank, often reaching the base of the complex. Minor pyroclastic flows were occasionally generated. Ash plumes drifted W and SW, often causing minor ashfall around the volcano.

Geological summary: Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

The Darwin VAAC reported that during 24-25 February ash plumes from Semeru rose to 4-4.3 km (13,000-14,000 ft) a.s.l. and drifted SE based on satellite images. PVMBG noted that weather conditions prevented visual observations during 24 February-2 March. The Alert Level remained at 2 (on a scale of 1-4), with a general exclusion zone of 1 km and extensions to 4 km in the SSE sector.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 19-26 February. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Soufriere St. Vincent, St. Vincent

13.33°N, 61.18°W, Summit elev. 1220 m

University of the West Indies Seismic Research Centre (UWI-SRC) and National Emergency Management Organisation (NEMO) reported that the lava dome in Soufrière St. Vincent’s main crater continued to grow during 24 February-2 March. The rate of growth was variable, though overall slow. Gas emissions continued to damage vegetation in the summit area as well as on the SW flank. The monitoring teams replaced a camera and continue to improve the seismic and GPS networks. The Alert Level remained at Orange (the second highest level on a four-color scale).

Geological summary: Soufrière St. Vincent is the northernmost and youngest volcano on St. Vincent Island. The NE rim of the 1.6-km wide summit crater is cut by a crater formed in 1812. The crater itself lies on the SW margin of a larger 2.2-km-wide caldera, which is breached widely to the SW as a result of slope failure. Frequent explosive eruptions after about 4,300 years ago produced pyroclastic deposits of the Yellow Tephra Formation, which cover much of the island. The first historical eruption took place in 1718; it and the 1812 eruption produced major explosions. Much of the northern end of the island was devastated by a major eruption in 1902 that coincided with the catastrophic Mont Pelée eruption on Martinique. A lava dome was emplaced in the summit crater in 1971 during a strictly effusive eruption, forming an island within a lake that filled the crater. A series of explosive eruptions in 1979 destroyed the 1971 dome and ejected the lake; a new dome was then built.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported intermittent eruptive events at Suwanosejima’s Ontake Crater during 19-26 February. These events produced ash plumes that rose as high as 1.8 km above the crater rim and ejected bombs 200 m away from the crater. Ashfall was reported in Toshima village (4 km SSW). The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *