Active volcanoes in the world: July 26 - August 1, 2017

Active volcanoes in the world: July 26 - August 1, 2017

New activity/unrest was reported for 5 volcanoes between July 26 and August 1, 2017. During the same period, ongoing activity was reported for 14 volcanoes.

New activity/unrest: Katla, Iceland | Moyorodake [Medvezhia], Iturup (Etorofu) Island (Japan/Russia) | Piton de la Fournaise, Reunion Island (France) | Sangay, Ecuador | Sangeang Api, Indonesia.

Ongoing activity: Aira, Kyushu (Japan) | Bagana, Bougainville (Papua New Guinea) | Bezymianny, Central Kamchatka (Russia) | Bogoslof, Fox Islands (USA) | Cleveland, Chuginadak Island (USA) | Colima, Mexico | Dukono, Halmahera (Indonesia) | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Poas, Costa Rica | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Sinabung, Indonesia | Turrialba, Costa Rica.

New activity/unrest

Katla, Iceland

63.633°N, 19.083°W, Elevation 1490 m

On 29 July the Iceland Met Office (IMO) reported that a glacial outburst flood (jökulhlaup) in the Múlakvísl river, SE of Katla, had begun, and a M 3 earthquake along with a few smaller earthquakes were located in the N part of the caldera. Nearby seismic stations detected tremor possibly linked to the flood, though a subglacial volcanic component was not ruled out. The Aviation Color Code was raised to Yellow, the second highest level on a four-color scale. The public was advised to stay away from the river; it was dark colored and had a sulfur odor. By 31 July the jökulhlaup had subsided with conductivity measurements and tremor slowly reaching normal levels. The Aviation Color Code was lowered to Green.

Geological summary: Katla volcano, located near the southern end of Iceland's eastern volcanic zone, is hidden beneath the Myrdalsjökull icecap. The subglacial basaltic-to-rhyolitic volcano is one of Iceland's most active and is a frequent producer of damaging jökulhlaups, or glacier-outburst floods. A large 10 x 14 km subglacial caldera with a long axis in a NW-SE direction is up to 750 m deep. Its high point reaches 1380 m, and three major outlet glaciers have breached its rim. Although most historical eruptions have taken place from fissures inside the caldera, the Eldgjá fissure system, which extends about 60 km to the NE from the current ice margin towards Grímsvötn volcano, has been the source of major Holocene eruptions. An eruption from the Eldgjá fissure system about 934 CE produced a voluminous lava flow of about 18 cu km, one of the world's largest known Holocene lava flows. Katla has been the source of frequent subglacial basaltic explosive eruptions that have been among the largest tephra-producers in Iceland during historical time and has also produced numerous dacitic explosive eruptions during the Holocene.

Moyorodake [Medvezhia], Iturup (Etorofu) Island (Japan/Russia)

45.389°N, 148.838°E, Elevation 1124 m

The Institute of Volcanology and Geodynamics (Russian Academy of Natural Science) reported that during the morning of 31 July volcanologists working on Kudryavy, a stratovolcano of the Medvezhia volcanic complex, noted a sharp increase in the volume of vapor-and-gas emissions, with a plume rising more than 1 km. The emissions rose from a new crater, Malysh, that was formed after the 1999 phreatic eruption. A significant increase in temperature (an average of 100 degrees Celsius) was measured at fumarolic sites, and new high-temperature areas were noted. Crusts of native sulfur at the boundaries of high-temperature areas were melting and burning. Two people at the top of the volcano and workers at the main base camp (3.5 km S) self-evacuated. 

The report noted that a M 5.7 earthquake had occurred at 0800 that same morning, 200 km NE, within the same system of tectonic faults that the volcano resides on. The volcano has a permeable system of fissures, through which there has been constant degassing for more than 130 years.

Geological summary: The Moyorodake volcanic complex (also known as Medvezhia) occupies the NE end of Iturup (Etorofu) Island. Two overlapping calderas, 14 x 18 and 10 x 12 km in diameter, were formed during the Pleistocene. The caldera floor contains several lava domes, cinder cones and associated lava fields, and a small lake. Four small closely spaced stratovolcanoes were constructed along an E-W line on the eastern side of the complex. The easternmost and highest, Medvezhii, lies outside the western caldera, along the Pacific coast. Srednii, Tukap, and Kudriavy (Moyorodake) volcanoes lie immediately to the west. Historically active Moyorodake is younger than 2000 years; it and Tukap remain fumarolically active. The westernmost of the post-caldera cones, Menshoi Brat, is a large lava dome with flank scoria cones, one of which has produced a series of young lava flows up to 4.5 km long that reached Slavnoe Lake. Eruptions have been documented since the 18th century, although lava flows from cinder cones on the flanks of Menshoi Brat were also probably erupted within the past few centuries.

Piton de la Fournaise, Reunion Island (France)

21.244°S, 55.708°E, Elevation 2632 m

OVPF reported that the eruption at Piton de la Fournaise that began on 14 July continued through 1 August, though weather conditions often prevented visual observations. Tremor levels fluctuated. A few estimates based on satellite data indicated a minimum flow rate of 1-2 cubic meters per second. During the early evening on 25 July two vents in the main cone were active, and lava frequently overflowed parts of the channel. Visual observations on 30 July revealed that the lava-flow terminus remained 2.8 km from the vents.

Geological summary: The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Sangay, Ecuador

2.005°S, 78.341°W, Elevation 5286 m

Based on information from the Guayaquil MWO, the Washington VAAC reported that on 1 August an emission from Sangay rose to an altitude of 5.3 km (17,500 ft) a.s.l. and drifted W.

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. The dominantly andesitic volcano has been in frequent eruption for the past several centuries. The steep-sided, 5230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Sangeang Api, Indonesia

8.2°S, 119.07°E, Elevation 1949 m

Based on analyses of satellite imagery, pilot observations, and wind data, the Darwin VAAC reported that during 29-30 July ash plumes from Sangeang Api rose to altitudes of 2.4-2.7 km (8,000-9,000 ft) a.s.l. and drifted NW and W.

Geological summary: Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, 1949-m-high Doro Api and 1795-m-high Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported two events at Showa Crater (at Aira Caldera’s Sakurajima volcano) during 24-28 July. One of the events generated an ash plume that rose 2 km above the crater rim. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bagana, Bougainville (Papua New Guinea)

6.137°S, 155.196°E, Elevation 1855 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 1 August an ash plume from Bagana drifted W at an altitude of 2.1 km (7,000 ft) a.s.l.

Geological summary: Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported that during 21-28 July a thermal anomaly was identified daily over Bezymianny in satellite images. A lava flow continued to flow down the W flank of the dome. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by the collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Bogoslof, Fox Islands (USA)

53.93°N, 168.03°W, Elevation 150 m

AVO reported that during 26 July-1 August no activity at Bogoslof was observed in partly cloudy to clear satellite images, and no activity was detected in seismic, infrasound, or lightning data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Elevation 1730 m

AVO reported that during 26 July-1 August no activity was observed in seismic or infrasound data at Cleveland. The small lava dome on the floor of the crater had grown from 30 m in diameter to 42, and continued to inflate; the surface area of the dome was at least 50 x 45 m (~2,100 square meters), which was an increase of about 75% since 25 July (~1,200 square meters). Steam plumes rising from the crater were recorded by the webcam during 25 and 29-30 July, and elevated surface temperatures (consistent with lava-dome growth) were identified in satellite images during 30 July-1 August. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Colima, Mexico

19.514°N, 103.62°W, Elevation 3850 m

On 2 June the Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that during the previous week seismic data revealed 45 high-frequency events, 12 long-period events, 1.2 hours of tremor, 3 landslides, and one low-intensity explosion. Two lahars descended the La Lumbre ravine (SW) and three descended the Montegrande ravine (SSE); both ravines are in Colima state.

Geological summary: The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 26 July-1 August ash plumes from Dukono rose to altitudes of 2.1-2.7 km (7,000-9,000 ft) a.s.l. and drifted in multiple directions.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

During 26 July-1 August HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Several large cracks running parallel to the coastline spanned the width of the delta. Surface lava flows were active above the pali and on the coastal plain about 2 km upslope from the gravel emergency route.

Geological summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that during 22-27 July ash plumes from Klyuchevskoy were identified in satellite images drifting 120 km E and NE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Poas, Costa Rica

10.2°N, 84.233°W, Elevation 2708 m

OVSICORI-UNA reported that on 1 August an event at Poás passively produced a plume that rose 500 m above the crater.

Geological summary: The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Sabancaya, Peru

15.787°S, 71.857°W, Elevation 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya increased compared to the previous week; there was an average of 40 explosions recorded per day during 24-30 July. Gas-and-ash plumes rose 5 km above the crater rim and drifted more than 50 km NW and SE. Sulfur dioxide flux was as high as 2,530 tons per day, recorded on 28 July. The MIROVA system detected nine thermal anomalies.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly was identified daily during 21-28 July in satellite images over Sheveluch. Strong explosions on 23 July generated ash plumes that rose 11-12 km (36,100-39,400 ft) a.s.l. and during 23-24 July drifted 1,400 km E. The Aviation Color Code remained at Orange.

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

Based on PVMBG observations, satellite images, and wind data, the Darwin VAAC reported that during 26-29 and 31 July ash plumes from Sinabung rose 3.3-4.6 km (11,000-15,000 ft) a.s.l. and drifted NE, ENE, and ESE.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Turrialba, Costa Rica

10.025°N, 83.767°W, Elevation 3340 m

OVSICORI-UNA reported that on 26 July an event at Turrialba passively produced a plume that rose 300 m above the crater and drifted SW.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar