Active volcanoes in the world: November 9 - 15, 2016

Active volcanoes in the world: November 9 - 15, 2016

New activity was reported for 5 volcanoes between November 9 and 15, 2016. During the same period, ongoing activity was reported for 12 volcanoes.

New activity/unrest: Copahue, Central Chile-Argentina border | Kerinci, Indonesia | Langila, New Britian (Papua New Guinea) | Sabancaya, Peru | Ubinas, Peru.

Ongoing activity: Dukono, Halmahera (Indonesia) | Fuego, Guatemala | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Reventador, Ecuador | Santa Maria, Guatemala | Sheveluch, Central Kamchatka (Russia) | Sinabung, Indonesia | Suwanosejima, Ryukyu Islands (Japan) | Tengger Caldera, Eastern Java (Indonesia) | Turrialba, Costa Rica | Yasur, Vanuatu.

New activity/unrest

Copahue, Central Chile-Argentina border
37.856°S, 71.183°W, Summit elev. 2953 m

Based on satellite and webcam images, the Buenos Aires VAAC reported that during 9-12 November gas, steam, and ash plumes rose from Copahue to altitudes of 3.3-3.6 km (11,000-12,000 ft) a.s.l. and drifted SE, E, and NE.

Geologic summary: Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Kerinci, Indonesia
1.697°S, 101.264°E, Summit elev. 3800 m

Based on satellite data, the Darwin VAAC reported that on 15 November an ash plume from Kerinci rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted 30 km NE.

Geologic summary: The 3800-m-high Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. Kerinci is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. The volcano contains a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit of Kerinci. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. The frequently active Gunung Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Langila, New Britian (Papua New Guinea)
5.525°S, 148.42°E, Summit elev. 1330 m

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 13 November an ash plume from Langila rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 55 km N.

Geologic summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Sabancaya, Peru
15.78°S, 71.85°W, Summit elev. 5967 m

A Technical and Scientific Committee for volcanic risk management of the Arequipa region is comprised of five groups including IGP's Observatorio Vulcanológico del Sur (OVS) and INGEMMET's Observatorio Vulcanológico (OVI) and have been monitoring Sabancaya since 2013. The committee reported that new ash-bearing explosions began on 6 November. The explosions, detected at 2126, 2127, and 2149, produced ash plumes that rose 1.5 km above the crater rim and drifted E.

The frequency of hybrid earthquakes increased noticeably in early October and in the hours prior to the 6 November explosions. Volcanic gas emissions had also increased significantly, with values as high as 7,173 tons/day on 23 October. The MIROVA system had detected a thermal anomaly at the volcano on 2 November.

During 6-13 November ash-and-gas emissions from explosions and from periods in between explosions rose as high as 3 km above the crater. An event at 1320 on 8 November generated a significant ash plume that rose 2.4 km above the crater rim with ash dispersing within a 5-km radius. During 9-10 November ash plumes rose as high as 2 km and drifted 30-35 km SE, E, and NE, producing ashfall in the villages of Valle del Colca to the NE. On 11 November an explosion generated an ash plume that rose 3 km and drifted 40 km E and NE. An ash plume from an explosion the next day rose 2 km and drifted 30 km NE.

Geologic summary: Sabancaya, located on the saddle between 6288-m-high Ampato and 6025-m-high Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three volcanoes, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. Both Nevado Ampato and Nevado Sabancaya are only slightly affected by glacial erosion and consist of a series of lava domes aligned along a NW-SW trend. The name of 5967-m-high Sabancaya (meaning "tongue of fire" in the Quechua Indian language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Ubinas, Peru
16.355°S, 70.903°W, Summit elev. 5672 m

The Comité Científico de Monitoreo Permanente del volcán Ubinas, made up of scientists from IGP's Observatorio Vulcanológico del Sur (OVS) and INGEMMET's Observatorio Vulcanológico (OVI), reported that on 8 November three explosions at Ubinas (at 2126, 2127, and 2149) generated an ash plume that rose 1.5 km above the crater rim and drifted E.

Geologic summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Ongoing activity

Dukono, Halmahera (Indonesia)
1.693°N, 127.894°E, Summit elev. 1229 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 9-15 November ash plumes from Dukono rose to altitudes of 2.1-3.7 km (7,000-12,000 ft) a.s.l. and drifted N, NE, E, and SE.

Geologic summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Fuego, Guatemala
14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that during 11-15 November explosions at Fuego generated ash plumes that rose as high as 1.3 km and drifted more than 15 km W and SW. Some explosions produced shock waves detected within a 10 km radius and also ejected incandescent material as high as 300 m. Minor avalanches were confined to the crater. Ashfall was reported in Morelia (9 km SW), Santa Sofía (12 km SW), Sangre de Cristo (8 km WSW), and Panimaché I and II (8 km SW).

Geologic summary: Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Kilauea, Hawaiian Islands (USA)
19.421°N, 155.287°W, Summit elev. 1222 m

During 9-15 November HVO reported that the lava lake continued to rise and fall, circulate, and spatter in Kilauea’s Overlook vent; the lake level rose almost to the rim (Halema’uma’u floor) during 9-10 November. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean near Kamokuna at the easternmost lava delta.

Geologic summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)
56.056°N, 160.642°E, Summit elev. 4754 m

On 8 November, KVERT reported that activity at Klyuchevskoy had decreased significantly and therefore the Aviation Color Code was lowered to Yellow. Lava effusion onto the flanks was last noted on 3 November; the next day the thermal anomaly was reduced. Ash plumes were last detected in satellite images during 3-4 November. Strombolian activity in the crater was also observed on those days. Strong gas-and-steam emissions continued.

Geologic summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Reventador, Ecuador
0.077°S, 77.656°W, Summit elev. 3562 m

During 9-15 November IG reported a high level of seismic activity including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions at Reventador; cloud cover sometimes prevented visual observations. Almost daily incandescent blocks were observed rolling as far as 1.6 km down the E, SE, and S flanks. Gas, water vapor, and ash plumes rose as high as 2 km and drifted W and NW.

Geologic summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Santa Maria, Guatemala
14.756°N, 91.552°W, Summit elev. 3772 m

On 9 November a 15-m-wide, 1-m-deep lahar triggered by rainfall descended the Cabello de Ángel drainage, a tributary of the Nimá I river drainage on Santa María’s S flank, carrying tree trunks and blocks up to 1 m in diameter. The lahar had a minor sulfur odor. During 12-15 November explosions from the Santiaguito lava-dome complex generated ash plumes that rose to 800 m above the complex and drifted SW. Ashfall was reported in areas downwind, including Monte Claro, San José, and la Quinta.

Geologic summary: Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sheveluch, Central Kamchatka (Russia)
56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that during 4-11 November lava-dome extrusion onto Sheveluch’s N flank was accompanied by strong fumarolic activity, dome incandescence, ash explosions with ash plumes as high as 6 km (19,700 ft) a.s.l., and hot avalanches. Satellite images showed a daily thermal anomaly over the dome. According to video and satellite data, ash plumes drifted as far as 143 km E during 3-4 November. The Aviation Color Code remained at Orange.

Geologic summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Sinabung, Indonesia
3.17°N, 98.392°E, Summit elev. 2460 m

Based on satellite images, wind data, and ground reports from PVMBG, the Darwin VAAC reported that during 11 and 13-14 November ash plumes from Sinabung rose to altitudes of 3.7-5.8 km (12,000-19,000 ft) a.s.l.

Geologic summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Suwanosejima, Ryukyu Islands (Japan)
29.638°N, 129.714°E, Summit elev. 796 m

Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that during 5-6 October explosions at Suwanosejima generated ash plumes that rose to altitudes of 1.2-2.1 km (4,000-7,000 ft) a.s.l. and drifted SE, S, and W.

Geologic summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Tengger Caldera, Eastern Java (Indonesia)
7.942°S, 112.95°E, Summit elev. 2329 m

Based on analyses of satellite and webcam images and information from PVMBG, the Darwin VAAC reported that during 10-12 November ash plumes from Tengger Caldera’s Bromo cone rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted NW, E, and SE.

Geologic summary: The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Turrialba, Costa Rica
10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported that during 9-13 November ash plumes observed almost daily rose as high as 1 km above Turrialba’s active vent. The plumes drifted in variable directions, particularly to the SW, W, and NE, and ashfall was reported in many areas of the Valle Central. Tremor decreased on 13 November; ash emissions were not observed on 14 November.

Geologic summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Yasur, Vanuatu
19.53°S, 169.442°E, Summit elev. 361 m

On 11 November the Vanuatu Geohazards Observatory stated that the Alert Level for Yasur remained at 2 (on a scale of 0-4) and that explosions continued to be intense. VGO reminded residents and tourists that hazardous areas were near and around the volcanic crater, within a 395-m-radius permanent exclusion zone, and that volcanic ash and gas could reach areas impacted by trade winds.

Geologic summary: Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous strombolian and vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. Yasur is largely contained within the small Yenkahe caldera and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Source: GVP

Register/become a supporter

Support us AD-FREE

Your support is crucial for our survival. It makes this project fully self-sustainable and keeps us independent and focused on the content we love to create and share. 

Monthly subscription

Subscription options

Yearly subscription

Subscription options

You'll receive your ad-free account for 20x faster browsing experience, clean interface without any distractions, ability to post comments without prior editorial check, all our desktop and mobile applications (current and upcoming) ad-free and with the full set of features available, a direct line of communication and much more. See all options.


No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar