New research finds evidence of catastrophic collision of the proto-Earth with a Mars-sized body

new-research-finds-evidence-of-catastrophic-collision-of-the-proto-earth-with-a-mars-sized-body

According to the prevailing hypothesis, a Mars-sized body known as Theia smashed into Earth billions of years ago. Earth survived this giant impact but the fragments from the crash gradually coalesced into the Moon that we see today.

When scientists first looked at the samples from the Apollo 11, 12 and 16 missions their microscopes did not reveal traces of this impact but when Herwartz et al. recently analyzed fresh basalt samples from three Apollo landing sites and compared them with several samples of Earth's mantle they found that the oxygen isotope values measured in these lunar rocks differ significantly from the terrestrial material, supporting the giant-impact hypothesis.

“If the Moon formed predominantly from the fragments of Theia, as predicted by most numerical models, the Earth and Moon should differ,” the study published in journal Science on June 6, 2014, states.

"The differences are small and difficult to detect, but they are there," lead author Herwartz told Reuters. "We also had soil samples from NASA, but this material is not ideal for determining the bulk oxygen isotopic composition of the moon, as lunar soil may be contaminated by micrometeorites and the like."

Robin Canup, a planetary scientist with the Southwest Research Institute in Boulder, Colorado, said this work is the first to claim to see such a difference in the isotopes of oxygen.

"The reported difference between the Earth and moon is extremely small, small enough that I think there will be debate as to whether the difference is real or an artifact of how one interprets the data," she added.

From the abstract:

"Most numerical models of this collision imply a higher portion of Theia in the Moon than in Earth. Because of the isotope heterogeneity among solar system bodies, the isotopic composition of Earth and the Moon should thus be distinct. So far, however, all attempts to identify the isotopic component of Theia in lunar rocks have failed.

Our triple oxygen isotope data reveal a 12 ± 3 parts per million difference in Δ17O between Earth and the Moon, which supports the giant impact hypothesis of Moon formation. We also show that enstatite chondrites and Earth have different Δ17O values, and we speculate on an enstatite chondrite–like composition of Theia. The observed small compositional difference could alternatively be explained by a carbonaceous chondrite–dominated late veneer."

Reference:

"Identification of the giant impactor Theia in lunar rocks" – Daniel Herwartz, Andreas Pack, Bjarne Friedrichs, Addi Bischoff – Science 6 June 2014: Vol. 344 no. 6188 pp. 1146-1150 – DOI: 10.1126/science.1251117

Featured image credit: NASA / JPL – Caltech

If you value what we do here, create your ad-free account and support our journalism.

Share:


Your support makes a difference

Dear valued reader,

We hope that our website has been a valuable resource for you.

The reality is that it takes a lot of time, effort, and resources to maintain and grow this website. We rely on the support of readers like you to keep providing high-quality content.

If you have found our website to be helpful, please consider making a contribution to help us continue to bring you the information you need. Your support means the world to us and helps us to keep doing what we love.

Support us by choosing your support level – Silver, Gold or Platinum.

Other support options include Patreon pledges, one-off payments using PayPal and purchasing products from our webshop.

Thank you for your consideration. Your support is greatly appreciated.

Sincerely,
Teo Blašković

$5 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$50 /year

$10 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$100 /year

$25 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$200 /year

You can also support us on Patreon

support us on patreon

or by sending us a one-off payment using PayPal:


Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *