The Weekly Volcanic Activity Report: December 13 – 19, 2023

the weekly volcanic activity report

New activity/unrest was reported for 7 volcanoes from December 13 – 19, 2023. During the same period, ongoing activity was reported for 19 volcanoes.

New activity/unrest: Ioto, Volcano Islands | Kanaga, Andreanof Islands (USA) | Lewotobi, Flores Island | Marapi, Central Sumatra | Raung, Eastern Java | Reykjanes, Reykjanes Peninsula | Tengger Caldera, Eastern Java.

Ongoing activity: Aira, Kyushu (Japan) | Ebeko, Paramushir Island (Russia) | Great Sitkin, Andreanof Islands (USA) | Ibu, Halmahera | Krakatau, Sunda Strait | Lewotolok, Lembata Island | Mayon, Luzon (Philippines) | Merapi, Central Java | Poas, Costa Rica | Popocatepetl, Mexico | Reventador, Ecuador | Sabancaya, Peru | Sangay, Ecuador | Semeru, Eastern Java | Sheveluch, Central Kamchatka (Russia) | Shishaldin, Fox Islands (USA) | Suwanosejima, Ryukyu Islands (Japan) | Ubinas, Peru | Whakaari/White Island, North Island (New Zealand).

New activity/unrest

Ioto, Volcano Islands

24.751°N, 141.289°E | Summit elev. 169 m

The Japan Coast Guard conducted an overflight on 14 December of Ioto (Iwo-jima) to inspect the new island formed by an eruption from a submarine vent about 1 km off the SE coast at Okinahama. No eruptive activity was detected, but the shape of the island had notably changed due to erosion and wave action. During the previous 10 days deposits at the N part of the “J” shaped island had separated and migrated N, connecting to the Okinahama coast, and the curved part of the “J” had eroded into two smaller islands.

Geological summary: Ioto in the central Volcano Islands portion of the Izu-Bonin-Mariana arc lies within a 9-km-wide submarine caldera. Ioto, Iwojima, and Iojima are among many transliterations of the name. The volcano is also known as Ogasawara-Iojima to distinguish it from several other “Sulfur Island” volcanoes in Japan. The triangular, low-elevation, 8-km-long island narrows toward its SW tip and has produced trachyandesitic and trachytic rocks that are more alkalic than those of other volcanoes in this arc. The island has undergone uplift for at least the past 700 years, accompanying resurgent doming of the caldera; a shoreline landed upon by Captain Cook’s surveying crew in 1779 is now 40 m above sea level. The Motoyama plateau on the NE half of the island consists of submarine tuffs overlain by coral deposits and forms the island’s high point. Many fumaroles are oriented along a NE-SW zone cutting through Motoyama. Numerous recorded phreatic eruptions, many from vents on the W and NW sides of the island, have accompanied the uplift.

Kanaga, Andreanof Islands (USA)

51.923°N, 177.168°W | Summit elev. 1307 m

AVO reported that a small explosion at Kanaga was detected in local infrasound and seismic data at 2231 on 18 December, and was followed by elevated seismicity. No ash emissions were detected in partly cloudy satellite images. The next day the Volcano Alert Level was raised to Advisory (the second level on a four-level scale) and the Aviation Color Code was raised to Yellow (the second color on a four-color scale).

Geological summary: Symmetrical Kanaga stratovolcano is situated within the Kanaton caldera at the northern tip of Kanaga Island. The caldera rim forms a 760-m-high arcuate ridge south and east of Kanaga; a lake occupies part of the SE caldera floor. The volume of subaerial dacitic tuff is smaller than would typically be associated with caldera collapse, and deposits of a massive submarine debris avalanche associated with edifice collapse extend nearly 30 km to the NNW. Several fresh lava flows from historical or late prehistorical time descend the flanks of Kanaga, in some cases to the sea. Historical eruptions, most of which are poorly documented, have been recorded since 1763. Kanaga is also noted petrologically for ultramafic inclusions within an outcrop of alkaline basalt SW of the volcano. Fumarolic activity occurs in a circular, 200-m-wide, 60-m-deep summit crater and produces vapor plumes sometimes seen on clear days from Adak, 50 km to the east.

Lewotobi, Flores Island

8.542°S, 122.775°E | Summit elev. 1703 m

On 17 December seismicity at Lewotobi increased significantly, prompting PVMBG to raise the Alert Level to 2 (on a scale of 1-4). Seismicity had been increasing during the previous week and was characterized by greater numbers of both deep and shallow volcanic earthquakes, and the emergence of tornillo-type earthquakes which indicated fluid movement. The public was warned to stay 2 km away from the craters at each summit.

Geological summary: The Lewotobi “husband and wife” twin volcano (also known as Lewetobi) in eastern Flores Island is composed of the Lewotobi Lakilaki and Lewotobi Perempuan stratovolcanoes. Their summits are less than 2 km apart along a NW-SE line. The conical Lakilaki has been frequently active during the 19th and 20th centuries, while the taller and broader Perempuan has erupted only twice in historical time. Small lava domes have grown during the 20th century in both of the crescentic summit craters, which are open to the north. A prominent flank cone, Iliwokar, occurs on the E flank of Perampuan.

Marapi, Central Sumatra

0.38°S, 100.474°E | Summit elev. 2885 m

PVMBG reported that eruptive activity at Marapi (on Sumatra) was ongoing during 13-19 December, though foggy and raining weather conditions often prevented visual observations of the summit. White-and-gray ash plumes that were sometimes dense rose 400-600 m and drifted S, SW, NW, and NE during 13-15 and 18 December. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay 3 km away from the summit crater.

Geological summary: Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra’s most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Raung, Eastern Java

8.119°S, 114.056°E | Summit elev. 3260 m

PVMBG reported that during 1-17 December the maximum height of steam-and-gas plumes at Raung was 500 m above the summit. An M 2.6 local tectonic earthquake was detected on 18 December and afterwards plumes rose as high as 1 km. Seismicity during December indicated that fluid movement was concentrated at shallow depths; signals indicating emissions significantly increased on 18 December. Deformation data indicated a trend of deflation. On 18 December PVMBG raised the Alert Level to 2 (on a scale of 1-4) noting that the visual observations and seismic data indicated unstable conditions. The pubic was warned to stay 3 km away from the summit crater.

Geological summary: Raung, one of Java’s most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Reykjanes, Reykjanes Peninsula

63.817°N, 22.717°W | Summit elev. 140 m

IMO reported that a new eruption on the Reykjanes peninsula began at 2217 on 18 December from fissures that opened in a location close to the older Sundhnúkagígar crater row, about 3 km NE of the town of Grindavík. A magmatic dike began intruding beneath the area in late October based on seismic and deformation data; magma continued to flow into the dike causing ground cracking in areas along its axis. The eruption was immediately preceded by an earthquake swarm that began at 2100 on 18 December and the opening of the fissure was accompanied by significant ground deformation.

Increased seismicity and a burst of incandescence indicating the start of the eruption was seen in webcam images. IMO raised the Aviation Color Code to Red (the highest level on a four-color scale) until the situation was able to be evaluated and in case ash was present in any emissions. After the first fissure opened, it propagated S in a series of four additional segments, slightly offset from each other but aligned with the previous dike intrusion. The total length of the fissure was estimated to be 4 km, with the north end just E of the Stóra-Skógfell cones and the south end E of the Sundhnúk cone. Large lava fountains possibly rose hundreds of meters high along the fissures, feeding lava flows in multiple directions. The rate of lava discharge during the first two hours of the eruption was about 100-200 cubic meters per second. The tallest lava fountains were located on the N end of the fissure. The largest earthquake, a M 4.1, was recorded at 2325. The Aviation Color Code was lowered to Orange. By midnight seismicity had declined and the eruption was less intense.

During a second overflight with the Iceland Coast Guard at around 0400 on 19 December scientists noted that the fissure had stopped extending and that most of the activity was concentrated in the central portion. There was minor activity at the S end, near the Hagafell cone, and most of the lava was advancing E towards Fagradalsfjall. Two branches traveled W, remaining N of Stóra-Skógfell. Gas plumes drifted W and NW. Residents of Grindavík, evacuated in November due to ground cracking and unsafe conditions, had recently been allowed to return and allowed to stay until 2100, but not overnight; they again fully evacuated the town due to the eruption. The recently reopened Blue Lagoon resort closed again. Some area roads were also temporarily closed.

Eruptive activity concentrated at five vents during the early part of 19 December. By 1430 the lava discharge rate was about one-fourth the rate measured at the beginning of the eruption and about one-third of the fissure was active. Lava fountains were lower, rising as high as about 30 m. The eruption intensity continued to decline and by 1830 only three vents were erupting. About 5 cm of deflation was detected in Svartsengi; a total of 35 cm of uplift had been recorded there since the beginning of the dike intrusion in November. The power plant in Svartsengi, W of the fissure, was not threatened by the current lava flows, though construction of an earthen barrier around it and the Blue Lagoon continued.

Geological summary: The Reykjanes volcanic system at the SW tip of the Reykjanes Peninsula, where the Mid-Atlantic Ridge rises above sea level, comprises a broad area of postglacial basaltic crater rows and small shield volcanoes. The submarine Reykjaneshryggur volcanic system is contiguous with and is considered part of the Reykjanes volcanic system, which is the westernmost of a series of four closely-spaced en-echelon fissure systems that extend diagonally across the Reykjanes Peninsula. Most of the subaerial part of the system (also known as the Reykjanes/Svartsengi volcanic system) is covered by Holocene lavas. Subaerial eruptions have occurred in historical time during the 13th century at several locations on the NE-SW-trending fissure system, and numerous submarine eruptions dating back to the 12th century have been observed during historical time, some of which have formed ephemeral islands. Basaltic rocks of probable Holocene age have been recovered during dredging operations, and tephra deposits from earlier Holocene eruptions are preserved on the nearby Reykjanes Peninsula.

Tengger Caldera, Eastern Java

7.942°S, 112.95°E | Summit elev. 2329 m

PVMBG reported increased activity at Tengger Caldera’s Bromo cone in a 13 December press release. Emissions that day were white, gray, and brown, had variable densities, and rose as high as 900 m above the summit. The plumes drifted in multiple directions. The report noted that tremor was continuous and accompanied in December by three volcanic earthquakes. Deformation data indicated inflation in December. Daily white emissions that rose as high as 700 m above the summit and drifted in multiple directions were visible through 18 December. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay outside of a 1-km radius of the crater.

Geological summary: The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java’s most active and most frequently visited volcanoes.

Ongoing activity

Aira, Kyushu (Japan)

31.5772°N, 130.6589°E | Summit elev. 1117 m

JMA reported ongoing activity at Minamidake Crater (Aira Caldera’s Sakurajima volcano) during 11-18 December, with incandescence at the crater observed nightly. Small eruptive events were occasionally recorded through the week. The Alert Level remained at 3 (on a 5-level scale), and the public was warned to stay 2 km away from both craters.

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan’s most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E | Summit elev. 1103 m

KVERT reported that moderate explosive activity was ongoing at Ebeko during 7-14 December. According to volcanologists in Severo-Kurilsk (Paramushir Island, about 7 km E), explosions during 7 and 11-12 December generated ash plumes that rose as high as 2.5 km (8,200 ft) a.s.l and drifted NE. The Aviation Color Code remained at Orange (the third level on a four-color scale). Dates are UTC; specific events are in local time where noted.

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Great Sitkin, Andreanof Islands (USA)

52.076°N, 176.13°W | Summit elev. 1740 m

AVO reported that an 11 December radar image of Great Sitkin showed continuing growth of a thick flow in the summit crater; effusion likely continued during 12-19 December. Weather clouds often obscured views of the volcano, though no notable activity was visible in a few clear webcam images on 15 December. Seismicity was low. The Volcano Alert Level remained at Watch (the third level on a four-level scale) and the Aviation Color Code remained at Orange (the third color on a four-color scale).

Geological summary: The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Ibu, Halmahera

1.488°N, 127.63°E | Summit elev. 1325 m

PVMBG reported that Ibu continued to erupt during 13-19 December. Daily white-and-gray ash emissions that were sometimes dense rose 200-1,300 m above the summit and drifted in multiple directions during 13-16 December. The Alert Level remained at a 2 (the second highest level on a four-level scale), with the public advised to stay outside of the 2 km hazard zone and 3.5 km away from the N area of the active crater.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Krakatau, Sunda Strait

6.1009°S, 105.4233°E | Summit elev. 285 m

PVMBG reported that the eruption at Krakatau continued during 13-19 December. White-and-gray ash plumes that were sometimes dense rose as high as 1 km above the summit and drifted NE and N during 13-16 December. Some webcam images posted with the daily reports showed incandescence at the vent. The Alert Level remained at 3 (on a scale of 1-4), and the public was warned to stay at least 5 km away from the crater.

Geological summary: The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Lewotolok, Lembata Island

8.274°S, 123.508°E | Summit elev. 1431 m

PVMBG reported that the eruption at Lewotolok continued during 13-19 December. White-and-gray ash plumes rose 100 m on 13 December and drifted E. White steam-and-gas plumes rose 100-200 m above the summit on the other days and drifted E, NE, and NW. Incandescence lava was ejected 200 m from the vent on 15 and 18 December and summit incandescence was visible in webcam images on 16 and 19 December. The Alert Level remained at 2 (on a scale of 1-4) and the public was warned to stay at least 2 km away from the summit crater.

Geological summary: The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano’s high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Mayon, Luzon (Philippines)

13.257°N, 123.685°E | Summit elev. 2462 m

PHIVOLCS characterized activity at Mayon as “decreased unrest” during 12-19 December. The seismic network recorded 1-4 daily volcanic earthquakes and 1-2 rockfall events during 12-15 December. The summit was occasionally obscured by weather conditions, though on most days emissions were visible drifting in multiple directions. The Tokyo VAAC reported that at 1447 on 17 December an ash emission was identified in a satellite image rising to 2.4 km (8,000 ft) a.s.l. and drifting WSW based on satellite data and information from PHIVOLCS. The Alert Level remained at 2 (on a 0-5 scale). Residents were reminded to stay away from the 6-km-radius Permanent Danger Zone (PDZ) and pilots were advised to avoid flying close to the summit.

Geological summary: Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Merapi, Central Java

7.54°S, 110.446°E | Summit elev. 2910 m

BPPTKG reported that the eruption at Merapi (on Java) continued during 8-14 December. A series of pyroclastic flows traveled 3.8 km SW down the Bebeng and Krasak drainages on 8 December. Minor amounts of ash fell in the districts of Dukun, Sawangan, Magelang, and Selo. During the week the SW lava dome produced a total of 243 lava avalanches; 22 traveled as far as 2 km down the Boyong drainage and 221 traveled as far as 1.9 km down the Bebeng drainage. Minor morphological changes to the SW lava dome were identified in webcam images due to continuing lava effusion and collapses of material. Both the number and intensity of shallow volcanic earthquakes and hybrid events significantly decreased during the week. The Alert Level remained at 3 (on a scale of 1-4), and the public was warned to stay 3-7 km away from the summit, based on location.

Geological summary: Merapi, one of Indonesia’s most active volcanoes, lies in one of the world’s most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Poas, Costa Rica

10.2°N, 84.233°W | Summit elev. 2697 m

OVSICORI-UNA reported that at 0646 on 16 December a small phreatic eruption at Poás ejected material 20 m above the lake’s surface and produced a steam plume that rose 200 m. Additionally, two small eruptions were recorded at 1436 on 17 December and 0022 on 18 December.

Geological summary: The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world’s most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Popocatepetl, Mexico

19.023°N, 98.622°W | Summit elev. 5393 m

CENAPRED reported that eruptive activity continued at Popocatépetl during 11-19 December. Long-period events totaling 34-280 per day were accompanied by steam-and-gas plumes that occasionally contained minor amounts of ash. The plumes mainly drifted ENE. The seismic network recorded 1.5-15.5 daily hours of tremor, as well as two volcano-tectonic earthquakes during 14-15 December and one M 1.9 volcano-tectonic earthquake on 16 December. The Alert Level remained at Yellow, Phase Two (the middle level on a three-color scale) and the public was warned to stay 12 km away from the crater.

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America’s 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Reventador, Ecuador

0.077°S, 77.656°W | Summit elev. 3562 m

IG-EPN reported that the eruption at Reventador was ongoing during 12-19 December. Seismicity was characterized by 23-51 daily explosions, long-period earthquakes, harmonic tremor, and tremor associated with emissions; data reception was interrupted during 13-14 December. Several daily ash-and-gas plumes rose as high as 1 km above the crater rim and drifted in multiple directions, though cloudy conditions prevented views at times during 18-19 December. Crater incandescence was often visible during both overnight and morning hours, and avalanches of incandescent material frequently descended the flanks to distances as far as 800 m from the summit. Weather conditions sometimes prevented views of the volcano. Secretaría de Gestión de Riesgos maintained the Alert Level at Orange (the second highest level on a four-color scale).

Geological summary: Volcán El Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic stratovolcano has 4-km-wide avalanche scarp open to the E formed by edifice collapse. A young, unvegetated, cone rises from the amphitheater floor to a height comparable to the rim. It has been the source of numerous lava flows as well as explosive eruptions visible from Quito, about 90 km ESE. Frequent lahars in this region of heavy rainfall have left extensive deposits on the scarp slope. The largest recorded eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Sabancaya, Peru

15.787°S, 71.857°W | Summit elev. 5960 m

Instituto Geofísico del Perú (IGP) reported that the eruption at Sabancaya continued at moderate levels during 11-17 December with a daily average of 55 explosions. Gas-and-ash plumes rose as high as 3.5 km above the summit and drifted E and SE. Thermal anomalies over the lava dome in the summit crater were identified in satellite data. Minor inflation was detected near the Hualca Hualca sector (4 km N). The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 12 km radius.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning “tongue of fire” in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sangay, Ecuador

2.005°S, 78.341°W | Summit elev. 5286 m

IG-EPN reported a high level of eruptive activity at Sangay during 12-19 December, with seismic stations recording 109-613 daily explosions. Daily ash-and-gas plumes were visible in webcam and satellite images, rising as high as 2 km above the crater rim and drifting SW, W, and NW; ash plumes rose as high as 3 km during 18-19 December. Webcam images showed incandescence at the summit vent and incandescent material descending the SE flank as far as 1.8 km from the crater. Weather clouds often prevented observations of the summit area. Secretaría de Gestión de Riesgos maintained the Alert Level at Yellow (the second highest level on a four-color scale).

Geological summary: The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador’s volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within the open calderas of two previous edifices which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been eroded by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of an eruption was in 1628. Almost continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Semeru, Eastern Java

8.108°S, 112.922°E | Summit elev. 3657 m

PVMBG reported that eruptive activity continued at Semeru during 13-19 December. White-and-gray ash plumes that were sometimes dense rose 500-700 m above the summit and drifted in multiple directions during 13 and 15-18 December. The Alert Level remained at 3 (third highest on a scale of 1-4). The public was warned to stay at least 5 km away from the summit in all directions, 13 km from the summit to the SE, 500 m from the banks of the Kobokan drainage as far as 17 km from the summit, and to avoid other drainages including the Bang, Kembar, and Sat, due to lahar, avalanche, and pyroclastic flow hazards.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E | Summit elev. 3283 m

KVERT reported that the eruption at Sheveluch continued during 7-14 December. A daily thermal anomaly was identified in satellite images. The Aviation Color Code remained at Orange (the third level on a four-color scale). Dates are based on UTC times; specific events are in local time where noted.

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka’s largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Shishaldin, Fox Islands (USA)

54.756°N, 163.97°W | Summit elev. 2857 m

AVO reported that unrest continued at Shishaldin during 12-19 December. Seismicity remained low and was characterized by small low-frequency earthquakes recorded daily and tremor recorded during 15-19 December. Barely elevated surface temperatures identified in satellite images during 13-14 December were likely associated with cooling deposits on the upper flanks. Minor steaming at the summit was visible in webcam images on 15 December. Infrasound signals indicating weak explosions were detected during 17-18 December but did not produce ash emissions; only minor steaming at the summit was visible in clear webcam images. The Volcano Alert Level remained at Watch (the third level on a four-level scale) and the Aviation Color Code remained at Orange (the third color on a four-color scale).

Geological summary: The symmetrical glacier-covered Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. It is the westernmost of three large stratovolcanoes in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning “mountain which points the way when I am lost.” Constructed atop an older glacially dissected edifice, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. A steam plume often rises from the summit crater.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E | Summit elev. 796 m

JMA reported that the eruption at Suwanosejima’s Ontake Crater continued during 11-18 December and crater incandescence was visible nightly. No explosions were detected, though eruption plumes rose as high as 800 m above the crater rim and large blocks were ejected as far as 200 m from the vent. The Alert Level remained at 2 (on a 5-level scale) and the public was warned to stay at least 1 km away from the crater.

Geological summary: The 8-km-long island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. One of Japan’s most frequently active volcanoes, it was in a state of intermittent Strombolian activity from Otake, the NE summit crater, between 1949 and 1996, after which periods of inactivity lengthened. The largest recorded eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed, forming a large debris avalanche and creating the open Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Ubinas, Peru

16.355°S, 70.903°W | Summit elev. 5672 m

Instituto Geofísico del Perú (IGP) reported that activity at Ubinas was at low levels during 1-15 December. Seismicity was low with daily averages of 143 volcano-tectonic earthquakes indicating rock fracturing and 23 earthquakes signifying the movement of gas and magma. Additionally, there was a total of more than 16 hours of seismic signals associated with ash emissions. During 10-15 December webcam images recorded emissions of gas, steam, and ash that rose as high as 2.5 km above the summit and drifted NW and W. The Alert Level remained at Yellow (the second level on a four-color scale) and the public was warned to stay 2 km away from the crater.

Geological summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Perú’s most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one of Holocene age about 1,000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Whakaari/White Island, North Island (New Zealand)

37.52°S, 177.18°E | Summit elev. 294 m

On 19 December GeoNet reported that activity at Whakaari/White Island remained low based on gas and observation flights conducted over the previous two months. Minor steam-and-gas emissions rose from a cluster of fumarolic vents located on the W shore of the lake; there has been no evidence of ash in the emissions. The discharge rates of the emissions during the year were characterized by low-to-moderate levels which were typical. Temperatures at the larger vents generally declined. The level of the lake had dropped, isolating a small pool from the main body of the lake. The Volcanic Alert Level remained at 2 (on a scale of 0-5) and the Aviation Color Code remained at Yellow (the second level on a four-color scale). GeoNet noted that Alert Levels reflect the level of unrest at the volcano but also consider the greater level of uncertainty due to the current lack of consistent and useful real-time data.

Geological summary: The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari (“The Dramatic Volcano”) and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

References:

1 Smithsonian Institution / US Geological Survey – Weekly Volcanic Activity Report – December 13 – 19, 2023 – Managing Editor: Sally Sennert

If you value what we do here, create your ad-free account and support our journalism.

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *