The Weekly Volcanic Activity Report: May 20 – 26, 2020

the-weekly-volcanic-activity-report-may-20-26-2020

New activity/unrest was reported for 1 volcano from May 20 – 26, 2020. During the same period, ongoing activity was reported for 13 volcanoes.

New activity/unrest: Karymsky, Eastern Kamchatka (Russia).

Ongoing activity: Aira, Kyushu (Japan), Dukono, Halmahera (Indonesia), Ebeko, Paramushir Island (Russia), Fuego, Guatemala, Ibu, Halmahera (Indonesia), Klyuchevskoy, Central Kamchatka (Russia), Pacaya, Guatemala, Popocatepetl, Mexico, Rincon de la Vieja, Costa Rica, Santa Maria, Guatemala, Semeru, Eastern Java (Indonesia), Sheveluch, Central Kamchatka (Russia), Suwanosejima, Ryukyu Islands (Japan).

New activity/unrest

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

On 25 May an ash plume from Karymsky was visible in satellite images drifting 30 km ESE, prompting KVERT to raise the Aviation Color Code to Orange (the second highest level on a four-color scale). Explosive activity on 27 May generated ash plumes that rose to 5 km (16,400 ft) a.s.l. Satellite data showed an ash plume 19×24 km in dimension continuing to drift SE.

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that during 18-25 May incandescence from Minamidake Crater (at Aira Caldera’s Sakurajima volcano) was visible nightly. There were 17 explosive events and five eruptive events with plumes rising as high as 2.8 km above the crater rim. Material was ejected 800-1,300 m away from the crater. The daily sulfur dioxide emission rate was high; it was just over 1,200 tons per day on 22 May. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite and wind model data, and information from PVMBG, the Darwin VAAC reported that during 20-26 May ash plumes from Dukono rose to 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 14-15 and 19-21 May that sent ash plumes up to 3.6 km (11,800 ft) a.s.l. A thermal anomaly was identified in satellite data on those same days, and ash plumes drifted 80 km SW, S, and SE during 14 and 20-21 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that in the evening on 20 May a new lava flow at Fuego traveled 300 m down the Ceniza (SSW) drainage. The crater was incandescent and gas emissions were constant; avalanches descended the flanks 1 km and reached vegetated areas. Explosions produced shock waves and ash plumes that rose just over 1 km above the summit. Lahars descended the Las Lajas ravine on the E flank 1650 on 21 May and the Ceniza drainage on the SW flank.

There were 5-12 explosions per hour recorded during 22-26 May, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 10-15 km in multiple directions. Shock waves rattled buildings within a 20-km radius, particularly in areas on the S flank. Incandescent material was ejected 100-300 m high and caused avalanches of blocks in the Ceniza, Seca (W), Trinidad (S), Las Lajas, and Honda drainages. Ashfall was reported in several areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Ciudad Vieja (13.5 km NE), San Miguel Dueñas (10 km NE), and Antigua Guatemala (18 km NE). Lava flows in the Ceniza drainage varied in length between 150 and 400 m long.

Geological summary: Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

The Darwin VAAC reported that on 20 May an ash plume from Ibu rose to 1.8 km (6,000 ft) a.s.l., or 500 m above the crater rim, based on information from PVMBG. Weather clouds prevented satellite views of the event. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Summit elev. 4754 m

KVERT reported that Strombolian activity at Klyuchevskoy was visible during 15-22 May along with a bright thermal anomaly identified in satellite images. A lava flow continued to advance down the Apakhonchich drainage on the SE flank. Gas-and-steam plumes with some ash drifted 100 km NW, E, and SE during 15-17 and 21 May. The Aviation Color Code remained at Orange.

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH reported that during 19-26 May Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 100 m above the crater rim. Active lava flows were 200 m long on the NW flank during 21-22 May and 300 m long on the NE flank during 25-26 May.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Popocatepetl, Mexico

19.023°N, 98.622°W, Summit elev. 5393 m

CENAPRED reported that each day during 20-26 May there were 90-251 steam-and-gas emissions from Popocatépetl, some of which contained minor amounts of ash. The plumes drifted mainly E and SE. An explosion at 0302 on 21 May ejected incandescent material onto the flanks. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale).

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Rincon de la Vieja, Costa Rica

10.83°N, 85.324°W, Summit elev. 1916 m

OVSICORI-UNA reported that periodic phreatic explosions at Rincón de la Vieja continued to be recorded by the seismic network and webcams during 20-26 May; most plumes rose no higher than 500 m above the crater rim. Some of the events were not visually confirmed by webcams because of weather conditions or darkness. A small ash eruption at 0537 on 21 May produced a plume that rose 1 km above the crater rim and contained less water vapor than plumes from eruptive events in the past weeks. Plumes from eruptive events at 1624 on 22 May and 0608 on 24 May rose 1 km above the rim. An event at 0325 on 25 May was heard by residents to the N but was no visually confirmed due to darkness. Later that day, in the early evening, an hour-long sequence of eruptions produced gas-and-steam plumes and ejected tephra no higher than the crater rim (except for an event at 1738).

Geological summary: Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Santa Maria, Guatemala

14.757°N, 91.552°W, Summit elev. 3745 m

INSIVUMEH reported that during 19-26 May explosions at Santa María's Santiaguito lava-dome complex generated ash plumes that rose 700-1,000 m above the crater and drifted as far as 1 km NW, W, and SW. Avalanches of blocks descended the S, SE, and SW flanks of Caliente cone. Local ashfall around the volcano was sometimes reported.

Geological summary: Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

PVMBG reported that the eruption at Semeru continued during 20-26 May, though sometimes foggy conditions prevented visual confirmation. Incandescent material from the ends of lava flows descended 400-700 m in the Kembar drainage (on the S flank) during 20-21 and 25-26 May, reaching a maximum distance of 1.2 km from the crater. Ash plumes rose 200-500 m above the crater and drifted S during 19-20 May and N during 24-25 May. White plumes rose 400 m and drifted NE, E, S, and W on 26 May. The Alert Level remained at 2 (on a scale of 1-4), and the public was reminded to stay outside of the general 1-km radius from the summit and 4 km on the SSE flank.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 15-22 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that nighttime incandescence at Suwanosejima’s Ontake Crater was visible during 15-22 May. Two explosions were recorded on 21 May, producing plumes that rose as high as 900 m above the crater rim. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *