·

New research shows Earth’s core is more abundant in oxygen than previously thought

new-research-shows-earths-core-is-more-abundant-in-oxygen-than-previously-thought

An international team of scientists has concluded the oxygen is more abundant in the core of the Earth than previously thought, by considering the combined geophysical and geochemical signatures of the planet. Results were published in the online September 21 – 25, 2015 edition of the Proceedings of the National Academy of Sciences.

Lawrence Livermore geologist Rick Ryerson and his international colleagues from Institut de Physique du Globe de Paris,  École Polytechnique Fédérale de Lausanne and University College London, have discovered the oxygen concentration of the Earth's core is higher than previous research suggested.

Based on this discovery, the team has concluded Earth's accreted material must be more abundant in oxygen than its present day mantle, similar to the accreted material found in planetesimals such as asteroids. Planetesimals are space objects composed of dust, rock and other material. Their size varies between several meters to hundreds of kilometers.

Model showing planetesimals accreting to a growing Earth 4.56 billion years ago. The cutaway reveals the simultaneous formation of the Earth's core as dense, iron-rich metallic material descending through a planetary magma ocean. Image credit: Antoine Pitrou/Institut de Physique du Globe de Paris.

This new results possibly provides a deeper insight into how the Earth originally formed in the first place. According to known facts, our planet formed about 4.56 billion years ago in the process of accretion of planetary embryos and planetoid bodies that lasted for about several tens of millions of years.

The process of formation left a trail inside the Earth's core and mantle, visible to this day in the planet's geophysical and geochemical signatures. Previous research has observed the compositional signatures of planet's core and mantle separately, rather than together.

By combining the signatures and using the knowledge of experimental petrology, geochemistry, mineral physics and seismology, researchers found the Earth's core has been formed in a hot, up to 1 800 km (1 118 miles) deep, liquid magma ocean, in conditions much richer with oxygen than present-day Earth.

“This new model is at odds with the current belief that core formation occurred under reduction conditions. Instead we found that Earth’s magma ocean started out oxidized and has become reduced through time by oxygen incorporation into the core,” Ryerson said.

The scientists have concluded the oxygen concentration in the core is higher, and the concentration of silicon lower than previously thought. 

Source: Lawrence Livermore National Laboratory

Featured image: The theoretical model showing planetesimals accreting to a growing Earth 4.56 billion years ago. Image credit: Antoine Pitrou/Institut de Physique du Globe de Paris.

If you value what we do here, create your ad-free account and support our journalism.

Share:

Related articles



Your support makes a difference

Dear valued reader,

We hope that our website has been a valuable resource for you.

The reality is that it takes a lot of time, effort, and resources to maintain and grow this website. We rely on the support of readers like you to keep providing high-quality content.

If you have found our website to be helpful, please consider making a contribution to help us continue to bring you the information you need. Your support means the world to us and helps us to keep doing what we love.

Support us by choosing your support level – Silver, Gold or Platinum. Other support options include Patreon pledges and sending us a one-off payment using PayPal.

Thank you for your consideration. Your support is greatly appreciated.

Sincerely,
Teo Blašković

$5 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$50 /year

$10 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$100 /year

$25 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$200 /year

You can also support us on Patreon

support us on patreon

or by sending us a one-off payment using PayPal:


Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

2 Comments

Leave a reply

Your email address will not be published. Required fields are marked *