·

Influx of Earth-bound positrons must have exotic origin, study suggests

influx-of-earth-bound-positrons-must-have-exotic-origin-study-suggests

The excess positrons arriving at Earth must have a more exotic origin than nearby pulsars, report researchers.

Their results are based on observations from the High-Altitude Water Cherenkov (HAWC) gamma-ray observatory in Mexico, which detects the shower of particles created when high-energy gamma rays smash into Earth's atmosphere. To date, several cosmic ray detectors have found more positrons arriving at Earth than expected.

Influx of Earth-Bound Positrons Must Have Exotic Origin, Study Suggests

An image of the HAWC detector consisting of 300 large (188 000 liters / 50k gallon) water tanks, each with 4 photodetectors. HAWC is located at an altitude of 4100 m above sea level inside the Parque Nacional Pico de Orizaba, in Mexico. This material relates to a paper that appeared in the 17 Nov. 2017, issue of Science, published by AAAS. The paper, by A.U. Abeysekara at University of Utah in Salt Lake City, UT, and colleagues was titled, 'Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth.' Credit: Jordan A. Goodman

Previous research has suggested that pulsars are likely sources of these extra particles, and a handful of known pulsars are both sufficiently close and sufficiently old to be prime sources.

Now, A. U. Abeysekara and colleagues have used HAWC to observe two suitable pulsars, finding extended emission of gamma rays around them. Because the extended emission is generated by high-energy electrons and positrons, studying the properties of these emissions helped the researchers calculate how far positrons generated by the pulsars could diffuse through space.

Their results demonstrate that positrons generated by these pulsars are not able to reach all the way to Earth.

The excess positrons arriving at our planet must have a more exotic origin, the authors say – perhaps due to annihilation or decay of dark matter particles, among other possibilities.

Provided by American Association for Advancement of Science

Featured image: An image of the HAWC detector consisting of 300 large (188 000 liters / 50k gallon) water tanks, each with 4 photodetectors. Credit: Jordan A. Goodman

If you value what we do here, create your ad-free account and support our journalism.

Share:


Your support makes a difference

Dear valued reader,

We hope that our website has been a valuable resource for you.

The reality is that it takes a lot of time, effort, and resources to maintain and grow this website. We rely on the support of readers like you to keep providing high-quality content.

If you have found our website to be helpful, please consider making a contribution to help us continue to bring you the information you need. Your support means the world to us and helps us to keep doing what we love.

Support us by choosing your support level – Silver, Gold or Platinum.

Other support options include Patreon pledges, one-off payments using PayPal and purchasing products from our webshop.

Thank you for your consideration. Your support is greatly appreciated.

Sincerely,
Teo Blašković

$5 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$50 /year

$10 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$100 /year

$25 /month

  • Ad-free account
  • Clean user interface and fast browsing
  • Direct communication with us via chat and email
  • Suggest new features, content and applications
  • Early access to new apps and features

$200 /year

You can also support us on Patreon

support us on patreon

or by sending us a one-off payment using PayPal:


Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

One Comment

  1. It is necessary to know the way of forming celestial bodies and the order of the process of their creation. When forming matter from the substance Aether, which fills the infinite universe, quark gluon plasma is first formed and magnetars are filled out. In their further arrangement and transformation, quasars, pulsars and neutron stars are formed. The quasars and pulsars transmit from their surface different waves of particles that can contain neutrons. In the breakdown of neutrons, free gluons can also produce electrons and positrons, the residual-quarks, can be transformed into neutrons. Kd these transformations also occur photons. When a neutron star falls apart, that is, supernovae, clouds of gases forming stellar systems (solar systems) are formed and this takes place until the formation of clusters of galaxies, in which critical mass can form, when black holes are formed in the matter is returned to them in the form of Aether from which matter forms.

Leave a reply

Your email address will not be published. Required fields are marked *