·

Gamma rays will reach beyond the limits of light

gamma-rays-will-reach-beyond-the-limits-of-light

Researchers have discovered a new way to produce high energy photon beams. The new method makes it possible to produce these gamma rays in a highly efficient way, compared with today's technique. The obtained energy is a billion times higher than the energy of photons in visible light. These high-intensity gamma rays significantly exceed all known limits, and pave the way towards new fundamental studies.

"When we exceed the limit of what is currently possible, we can see deeper into the basic elements of nature. We can dive into the deepest part of the atomic nuclei," says Arkady Gonoskov, a researcher at the Department of Physics at the Chalmers University of Technology.

The results were recently published in the high impact journal Physical Review X. The new method is an outcome of a collaboration between the Chalmers University of Technology in Sweden, Institute of Applied Physics and Lobachevsky University in Russia and the University of Plymouth in the UK. Physicists in different fields, as well as computer scientists, have managed to work out the numerical models and analytic estimates for simulating these ultra-strong gamma rays in a new and somehow unexpected way.

In normal cases, if you shoot a laser pulse at an object, all the particles scatter. But if the laser light is intense enough and all parameters are right, the researchers have found that the particles are instead trapped. They form a cloud where particles of matter and antimatter are created and start to behave in a very special, unusual way.

"The cloud of trapped particles efficiently converts the laser energy into cascades of high energy photons – a phenomenon that is very fortunate. It's an amazing thing that the photons from this source can be of such high energy," says Mattias Marklund, a professor at the Department of Physics at Chalmers.

The discovery is highly relevant for the future large-scale laser facilities that are under development right now. The most intense light sources on earth will be produced at such research facilities – as big as football fields.

"Our concept is already part of the experimental program proposed for one such facility: Exawatt Center for Extreme Light Studies in Russia. We still don't know where these studies will lead us, but we know that there are yet things to be discovered within nuclear physics, for example, new sources of energy. With fundamental studies, you can aim at something and end up discovering something completely different – which is more interesting and important," says Arkady Gonoskov.

Featured image credit: Gamma rays are electromagnetic waves, just like visible light or X-rays, but with much higher energy. The most energetic gamma rays in the world could be created by the help of advanced laser physics. When the laser light is intense enough and all parameters are right, trapped particles (green) could efficiently convert the laser energy (surfaces in red, orange and yellow) into cascades of super-high energy photons (pink). Credit: Arkady Gonoskov

If you value what we do here, open your ad-free account and support our journalism.

Share:

Related articles

Producing content you read on this website takes a lot of time, effort, and hard work. If you value what we do here, select the level of your support and register your account.

Your support makes this project fully self-sustainable and keeps us independent and focused on the content we love to create and share.

All our supporters can browse the website without ads, allowing much faster speeds and a clean interface. Your comments will be instantly approved and you’ll have a direct line of communication with us from within your account dashboard. You can suggest new features and apps and you’ll be able to use them before they go live.

You can choose the level of your support.

Stay kind, vigilant and ready!

$5 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$50 /year

$10 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$100 /year

$25 /month

  • Ad-free account
  • Instant comments
  • Direct communication
  • New features and apps suggestions
  • Early access to new apps and features

$200 /year

You can also support us by sending us a one-off payment using PayPal:

One Comment

  1. I wish I was born later in life because I will not live long enough to actually see all of the advancements made by science. The scientific community all getting together from so many different countries impresses me in such ways that I have no words to express my true feelings for their successes and connectivity. I am just plain proud of scientists across the globe. This applies to Russia, Europe and the West. I will follow all of your work for as long as I can. Thanks to all of you

Leave a reply

Your email address will not be published.