Active volcanoes in the world: May 17 - 23, 2017

Active volcanoes in the world: May 17 - 23, 2017

New activity/unrest was reported for 4 volcanoes between May 17 and 23, 2017. During the same period, ongoing activity was reported for 18 volcanoes.

New activity/unrest: Manam, Papua New Guinea | Nishinoshima, Japan | Poas, Costa Rica | Sheveluch, Central Kamchatka (Russia).

Ongoing activity: Aira, Kyushu (Japan) | Bagana, Bougainville (Papua New Guinea) | Bezymianny, Central Kamchatka (Russia) | Bogoslof, Fox Islands (USA) | Cleveland, Chuginadak Island (USA) | Colima, Mexico | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Ibu, Halmahera (Indonesia) | Kambalny, Southern Kamchatka (Russia) | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Langila, New Britain (Papua New Guinea) | Piton de la Fournaise, Reunion Island (France) | Sabancaya, Peru | San Miguel, El Salvador | Sinabung, Indonesia | Turrialba, Costa Rica.

New activity/unrest

Manam, Papua New Guinea

4.08°S, 145.037°E, Elevation 1807 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 18-20 May ash plumes from Manam rose 2.1-2.7 km (7,000-9,000 ft) a.s.l. and drifted W and WNW.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Nishinoshima, Japan

27.247°N, 140.874°E, Elevation 25 m

The Japan Coast Guard reported that during an overflight of Nishinoshima during 1300-1345 on 2 May observers noted frequent (every 40-60 seconds) Strombolian explosions at a new pyroclastic cone in the crater. Ash plumes rose 500 m. Two lava flows originating from the N part of the cone traveled 180 m SW and 170 m W, and entered the ocean. The island continued to grow and was estimated to be 2 km E to W and about 1.9 km N to S, with an area of 2.75 square kilometers (it was 2.68 square kilometers on 15 September 2016).

Geological summary: The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Poas, Costa Rica

10.2°N, 84.233°W, Elevation 2708 m

OVSICORI-UNA reported that tremor levels at Poás were at low-to-moderate levels during 17-21 May and at higher levels during 22-23 May. Low-amplitude long-period earthquakes were recorded on 19 May, and some low-frequency and volcano-tectonic events were detected during 21-22 May. Plumes consisted mainly of gas and water vapor, but sometimes included solid material, and rose no more than 1 km above the vent.

Geological summary: The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that during 13-14 May a series of explosions at Sheveluch generated ash plumes that rose 4.5-5 km (14,800-16,400 ft) a.s.l. and drifted SW and SE. Powerful explosions on 16 May generated ash plumes that rose as high as 11 km (36,100 ft) a.s.l. and drifted about 150 km ENE. Pyroclastic flows descended the S flank. Two explosions were detected on 18 May. Ash plumes during 16-19 May drifted 400 km ENE. The Aviation Color Code (ACC) remained at Orange during 13-19 May, except for a few hours on 16 May when the strong explosions prompted KVERT to raise the ACC to Red.

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported that 10 events at Showa Crater (at Aira Caldera’s Sakurajima volcano) were detected during 15-18 May. One of the events, an explosion at 2302 on 17 May, generated a large ash plume that rose 3 km above the crater rim and ejected material 500-800 m from the crater. That same day at 1526 an explosion at Minamidake summit crater produced an ash plume that rose 1.1 km above the crater. At 0058 on 19 May a plume rose 1.4 km above Showa Crater's rim. Very small events occasionally occurred at Minamidake summit crater during 19-22 May. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bagana, Bougainville (Papua New Guinea)

6.137°S, 155.196°E, Elevation 1855 m

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 20-22 May ash plumes from Bagana rose 2.4 km (8,000 ft) a.s.l. and drifted W.

Geological summary: Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported gas-and-steam activity at Bezymianny during 12-19 May, and a thermal anomaly identified in satellite images daily. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Bogoslof, Fox Islands (USA)

53.93°N, 168.03°W, Elevation 150 m

AVO reported that the eruption at Bogoslof which began at 2232 on 16 May lasted about 73 minutes. Trace amounts of ash fell in the community of Nikolski on Umnak Island. Later that day the Aviation Color Code (ACC) was lowered to Orange and the Volcano Alert Level (VAL) was lowered to Watch; no further ash emissions were detected and seismicity was low. Satellite data showed that the event altered the N coastline of the island. The crater lake was breached with a 550-m-wide gap along the N shore, and the NE shore had been extended 300 m from new tephra deposits.

Geological summary: Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Elevation 1730 m

AVO reported that a short-lived explosion at Cleveland was detected in both seismic and infrasound data at 1938 on 16 May; the seismic signal lasted about 11 minutes. An ash cloud observed in satellite images rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted SW for about five hours. The explosions completely destroyed the lava dome that was emplaced in the summit crater during April-May. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Colima, Mexico

19.514°N, 103.62°W, Elevation 3850 m

On 19 May the Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that during the previous week seismic data revealed 25 high-frequency events, 15 long-period events, 2.2 hours of tremor, 12 landslides, and three low-intensity explosions. During 15-16 May sulfur dioxide emissions were below detectable limits (8.6 t/d).

Geological summary: The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 18-23 May ash plumes from Dukono rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted in multiple directions.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

KVERT reported that on 15 May explosions at Ebeko were observed by residents of Severo-Kurilsk (Paramushir Island) about 7 km E. Ash plumes rose as high as 2 km (6,600 ft) a.s.l. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Elevation 1325 m

Based on analyses of satellite imagery and information from PVMBG, the Darwin VAAC reported that during 19-20 and 23 May ash plumes from Ibu rose 1.5-1.8 km (5,000-6,000 ft) a.s.l. and drifted NE, E, and S.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kambalny, Southern Kamchatka (Russia)

51.306°N, 156.875°E, Elevation 2116 m

On 19 May KVERT reported that the eruption at Kambalny likely had ended, with only gas-and-steam activity observed during the previous month. The explosive phase began on 24 March and ended on 10 April. The Aviation Color Code was lowered to Green.

Geological summary: The southernmost major stratovolcano on the Kamchatka peninsula, Kambalny has a summit crater that is breached to the SE. Five Holocene cinder cones on the W and SE flanks have produced fresh-looking lava flows. Beginning about 6,300 radiocarbon years ago, a series of major collapses of the edifice produced at least three debris-avalanche deposits. The last major eruption took place about 600 years ago, although younger tephra layers have been found, and an eruption was reported in 1767. Active fumarolic areas are found on the flanks of the volcano, which is located south of the massive Pauzhetka volcano-tectonic depression.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

During 17-23 May HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater; the lake rose as high as 15 m below the crater rim and was visible from Hawaii Volcanoes National Park's Jaggar overlook. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater, from a vent high on the NE flank of the cone, and from a small lava pond in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna adding to a growing delta. Surface lava flows were active above and on the upper slopes of the pali.

Geological summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

Based on video and satellite data, KVERT reported that explosions at Klyuchevskoy on 17 May generated ash plumes that rose to 6 km (19,700 ft) a.s.l. and drifted about 180 km N and NE. A weak thermal anomaly was identified daily. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Langila, New Britain (Papua New Guinea)

5.525°S, 148.42°E, Elevation 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that on 19 May an ash plume from Langila rose 4.6 km (15,000 ft) a.s.l. and drifted almost 170 km WSW and dissipated. During 19-20 May ash plumes drifted N and NNW at 1.8 km (6,000 ft) a.s.l. On 23 May ash plumes rose 2.1 and 3 km (7,000 and 10,000 ft) a.s.l. and drifted NW and SW, respectively.

Geological summary: Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Piton de la Fournaise, Reunion Island (France)

21.244°S, 55.708°E, Elevation 2632 m

OVPF reported that a seismic crisis at Piton de la Fournaise began at 1340 on 17 May and was accompanied by rapid deformation that suggested rising magma; volcanic tremor was recorded at 2010. The seismic and deformation activity was located in the NE part of l’Enclos Fouqué caldera. During an overflight at 1100 on 18 May scientists observed no surface activity at the base of the Nez Coupé de Sainte Rose rampart (on the N side of the volcano) nor outside of l'Enclos Fouqué caldera, and suggested that fractures opened but did not emit lava. 

Seismicity increased at 0400 on 18 May. The number of shallow (<2 km depth) and deep (>2 km depth) volcano-tectonic earthquakes progressively decreased over the next three days: 40 shallow and 22 deep on 18 May, 18 shallow and 22 deep on 19 May, 7 shallow and 9 deep on 20 May, 8 shallow and 1 deep on 21 May. Carbon dioxide concentrations in soils measured at remote stations were high. During a field visit on 22 May scientists mapped the deformation associated with the 17 May event and measured displacements that did not exceed 35 cm. On 23 May OVPF reported that the 17-18 May activity resulted in two new zones of fumaroles that followed the trends seen in seismic and deformation data.

Geological summary: The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Sabancaya, Peru

15.787°S, 71.857°W, Elevation 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that during 15-21 May explosive activity at Sabancaya was similar to the previous week, with an average of 39 explosions detected per day. The number and magnitude of long-period and hybrid events was low. Gas-and-ash plumes rose as high as 4.2 km above the crater rim and drifted more than 40 km NE, E, and SE. The MIROVA system detected six thermal anomalies.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

San Miguel, El Salvador

13.434°N, 88.269°W, Elevation 2130 m

On 19 May SNET reported that during the previous 24 hours RSAM values at San Miguel continued to decrease, fluctuating between 69 and 80 units (typical background levels average 50 units). Sulfur dioxide flux was also lower, though changing winds may have affected readings.

Geological summary: The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. The unvegetated summit of the 2130-m-high volcano rises above slopes draped with coffee plantations. A broad, deep crater complex that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit, also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic-andesitic volcano have fed a series of historical lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the north, NE, and SE sides. The SE-flank lava flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. The location of flank vents has migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

Based on PVMBG observations, webcam and satellite images, and wind data, the Darwin VAAC reported that during 17-20 and 24 May ash plumes from Sinabung rose 4.3-8.8 km (14,000-29,000 ft) a.s.l. and drifted in multiple directions. BNPB reported a high-intensity eruption at the volcano on 20 May. An ash plume rose 4 km and drifted SE. There were 2,038 families (7,214 people) displaced to eight shelters, and an additional 2,863 people living in refugee camps. The Alert Level remained at 4 (on a scale of 1-4), with an exclusion zone of 7 km from the volcano on the SSE sector, and 6 km in the ESE sector, and 4 km in the NNE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Turrialba, Costa Rica

10.025°N, 83.767°W, Elevation 3340 m

OVSICORI-UNA reported that low-to-moderate amplitude tremor was recorded at Turrialba during 17-23 May. Small numbers of volcano-tectonic and long-period events were recorded during 18-19 May, and low-frequency and volcano-tectonic events were detected during 21-22 May. Ash emission were observed during 17-23 May, rising as high as 1 km above the vent. Ashfall was reported in El Tapojo and Juan Viñas (15 km SSE) during 17-18 May, and in Capellades (along with a strong sulfur odor) during 19-20 May.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Comments

No comments yet. Why don't you post the first comment?

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar