Planet Nine tilts the Sun - Q and A with Caltech astronomers

Planet Nine tilts the Sun - Q and A with Caltech astronomers

The search for so-called Planet Nine - an undiscovered planet at the edge of the Solar System that was predicted by the work of Caltech's Konstantin Batygin and Mike Brown in January 2016 - has yielded another important realization. It appears to be responsible for the unusual tilt of the Sun, according to a new study by Caltech scientists presented on October 18.

All of the planets orbit in a flat plane with respect to the Sun, roughly within a couple degrees of each other. That plane, however, rotates at a six-degree tilt with respect to the Sun - giving the appearance that the Sun itself is cocked off at an angle. Until now, no one had found a compelling explanation to produce such an effect. "It's such a deep-rooted mystery and so difficult to explain that people just don't talk about it," says Brown, the Richard and Barbara Rosenberg Professor of Planetary Astronomy.

"Because Planet Nine is so massive and has an orbit tilted compared to the other planets, the solar system has no choice but to slowly twist out of alignment," says Elizabeth Bailey, a graduate student at Caltech and lead author of a study announcing the discovery.

Brown and Batygin's discovery of evidence that the Sun is orbited by an as-yet-unseen planet - that is about 10 times the size of Earth with an orbit that is about 20 times farther from the Sun on average than Neptune's - changes the physics.

Planet Nine, based on their calculations, appears to orbit at about 30 degrees off from the other planets' orbital plane—in the process, influencing the orbit of a large population of objects in the Kuiper Belt, which is how Brown and Batygin came to suspect a planet existed there in the first place.

Professor Mike Brown, assistant professor Konstantin Batygin, and graduate student Elizabeth Bailey take questions on their work during the 48th meeting of American Astronomical Society's Division for Planetary Sciences annual meeting in Pasadena on October 18, 2016. Video courtesy Caltech

"It continues to amaze us; every time we look carefully we continue to find that Planet Nine explains something about the solar system that had long been a mystery," says Batygin, an assistant professor of planetary science.Professor Mike Brown, assistant professor Konstantin Batygin, and graduate student Elizabeth Bailey take questions on their work during the 48th meeting of American Astronomical Society's Division for Planetary Sciences annual meeting in Pasadena on October 18, 2016.

Planet Nine's angular momentum is having an outsized impact on the solar system based on its location and size. A planet's angular momentum equals the mass of an object multiplied by its distance from the Sun, and corresponds with the force that the planet exerts on the overall system's spin. Because the other planets in the solar system all exist along a flat plane, their angular momentum works to keep the whole disk spinning smoothly.

Planet Nine's unusual orbit, however, adds a multi-billion-year wobble to that system. Mathematically, given the hypothesized size and distance of Planet Nine, a six-degree tilt fits perfectly, Brown says.

The next question, then, is how did Planet Nine achieve its unusual orbit? Though that remains to be determined, Batygin suggests that the planet may have been ejected from the neighborhood of the gas giants by Jupiter, or perhaps may have been influenced by the gravitational pull of other stellar bodies in the solar system's extreme past.

For now, Brown and Batygin continue to work with colleagues throughout the world to search the night sky for signs of Planet Nine along the path they predicted in January. That search, Brown says, may take three years or more.

Source: Caltech

Featured image credit: Caltech

Comments

Marcelo Casanova 1 month ago

Everything takes logic in Apocalypse ( The Revelation) 7 messages to churchs-8 The Hell. 9 a new world.

Jamal Shrair 1 month ago

The Magnetic Force Causes the Inclination of the Orbit of the Solar System,
One of the long standing mysteries about our solar system that was first discovered in the mid eighteen hundreds has not been solved. Why the Sun spins at a different angle, with its axis roughly 7.2 degrees off from the rest of the planets. Researchers have attempted to explain this observed fact with different hypotheses. But, none of these hypotheses make a scientific sense. Beside that, we have to remember that all the planets of the solar system are inclined by different degrees, not only the Sun. I have written about this issue in my published work in 2013, Helical Universe. However, in physical reality there’s no such thing as tilted planet or star. In other words, it is not the celestial body itself which is titled, but its orbit is inclined or rather deviating in its direction from the vertical position. This is a Universal feature of all celestial bodies. The degree of the inclination depends on the strength of the celestial body’s own magnetic field and the degree of the influence of near by magnetic fields of other celestial bodies.

Now, researchers from California Institute of technology (Caltech), told New Scientist that the hypothetical planet nine might explain why the planets are out of line with the sun. Planet Nine may have tilted entire solar system except the sun: https://www.newscientist.com/article/2098029-planet-nine-may-have-tilted-entire-solar-system-except-the-sun/
There are strong indications that the so-called planet nine exists, but it is not the reason why the solar system is inclined. The inclination of the orbit of the solar system is exclusively determined by the magnetic force and magnetic fields interactions.

Jamal S. Shrair, Founder of the Helical Universe, www.helical-universe.info

Post a comment

Your name: *

Your email address: *

Comment text: *

The image that appears on your comment is your Gravatar