The Weekly Volcanic Activity Report: July 17 – 23, 2019

the-weekly-volcanic-activity-report-july-17-23-2019

New activity/unrest was reported for 5 volcanoes between July 17 and 23, 2019. During the same period, ongoing activity was reported for 12 volcanoes.

New activity/unrest: Manam, Papua New Guinea | Semisopochnoi, United States | Shishaldin, Fox Islands (USA) | Stromboli, Aeolian Islands (Italy) | Ubinas, Peru.

Ongoing activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Etna, Sicily (Italy) | Karymsky, Eastern Kamchatka (Russia) | Klyuchevskoy, Central Kamchatka (Russia) | Merapi, Central Java (Indonesia) | Pacaya, Guatemala | Sangeang Api, Indonesia | Sheveluch, Central Kamchatka (Russia) | Tengger Caldera, Eastern Java (Indonesia) | Villarrica, Chile.

New activity/unrest

Manam, Papua New Guinea

4.08°S, 145.037°E, Elevation 1807 m

The Darwin VAAC reported that on 21 July an ash plume from Manam rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted SW and W, based on satellite data and weather models.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Semisopochnoi, United States

51.93°N, 179.58°E, Elevation 1221 m

AVO reported that data from local seismic and infrasound sensors likely detected a small explosion at Semisopochnoi on 16 July. No ash was visible in cloudy satellite images although none was expected from an explosion of its size. A small plume drifted 18 km from the vent but had no indication of ash. A strong tremor signal was recorded at 2339 on 17 July and an infrasound signal was detected from an array located 260 km E on Adak Island. The event likely produced ash emissions, though none were visible above the cloud deck at 3 km (10,000 ft) a.s.l. Seismic activity continued to increase. On 18 July a short-lived, low-level eruption prompted AVO to raise the Aviation Color Code to Orange (the second highest level on a four-color scale) and the Volcano Alert Level to Watch (the second highest level on a four-level scale). A low-level plume was visible in occasional cloud-free satellite images. Seismic activity decreased abruptly that night and ground-coupled airwaves stopped being detected on adjacent islands, suggesting that the eruption had paused or ended. Seismic activity remained low at least through 21 July.

Geological summary: Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time. This volcano is located within the Aleutian Islands, a UNESCO Biosphere Reserve property.

Shishaldin, Fox Islands (USA)

54.756°N, 163.97°W, Elevation 2857 m

AVO reported that weak tremor continued to be recorded at Shishaldin during 17-23 July and elevated surface temperatures were observed in multiple satellite images. Cloudy conditions typically obscured webcam views of the volcano, but when conditions were clear a small steam plume at the summit was visible. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory.

Geological summary: The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. This volcano is located within the Aleutian Islands, a UNESCO Biosphere Reserve property.

Stromboli, Aeolian Islands (Italy)

38.789°N, 15.213°E, Elevation 924 m

INGV reported that multiple vents on Stromboli’s crater terrace were active during 15-21 July, though the exact number was unknown due to the unfavorable positions of the cameras. Vents in Area N (north crater area, NCA) produced low-to-medium-intensity explosions at a rate of 4-10 events per hour, ejecting lapilli and bombs less than 150 m high. The vents of Area C-S (South Central crater area) generated explosions of intensities variable between low and very high and at a rate of 6-17 events per hour. Tephra was ejected over 200 m high. Lava from Area C-S vents continued to travel down the S part of the Sciara del Fuoco shedding blocks that rolled all the way to the coastline.

Geological summary: Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium. This volcano is located within the Isole Eolie (Aeolian Islands), a UNESCO World Heritage property.

Ubinas, Peru

16.355°S, 70.903°W, Elevation 5672 m

IGP reported that during 17-19 July gas-and-ash emissions occasionally rose from Ubinas’s summit crater and drifted N, E, and SE. Beginning at 0227 on 19 July as many as three explosions (two were recorded at 0227 and 0235) generated ash plumes that rose to 5.8 km above the crater rim. The Buenos Aires VAAC reported that ash plumes rose as high as 6.5 km above the crater rim (or to 40,000 ft. a.s.l.) based on satellite images. The Alert Level was raised to Orange (on a 4-level scale). Ash plumes drifted as far as 250 km E and SE, reaching Bolivia. Ashfall was reported in areas downwind including the towns of Ubinas (6.5 km SSE), Escacha, Anascapa (11 km SE), Tonohaya (7 km SSE), Sacohaya, San Miguel (10 km SE), Huarina, and Matalaque, causing some families to evacuate. The VAAC reported that during 20-23 July ash plumes rose to 7.3-9.5 km (24,000-31,000 ft) a.s.l. and drifted E, ESE, and SE.

Geological summary: A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

 

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported that during 19-22 July as many as four explosions at Minamidake crater (at Aira Caldera’s Sakurajima volcano) generated ash plumes that rose at least to 1.5 km above the crater rim and ejected material 1.1 km from the vent. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on satellite and wind model data, and notices from PVMBG, the Darwin VAAC reported that during 17-22 July ash plumes from Dukono rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted mainly W, NW, and N. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

KVERT reported that a thermal anomaly over Ebeko was identified in satellite images during 13-16 and 18 July. Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E, observed explosions during 15-16 July that sent ash plumes up to 2 km (6,600 ft) a.s.l. The plumes drifted S and SE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Etna, Sicily (Italy)

37.748°N, 14.999°E, Elevation 3295 m

INGV reported that during 15-17 July sporadic explosions at Etna’s New Southeast Crater (NSEC) were accompanied by small ash puffs that quickly dissipated. Strombolian activity at NSEC increased during the morning of 18 July with explosions occurring at a rate of one every 1-2 minutes. In the following hours the rate of explosions increased, and by the evening Strombolian activity was almost continuous. The activity continued to intensify until 2300 when a sharp decrease occurred.

At 0009 on 19 July lava flowed from a new vent that opened on the lower NE flank of NSEC, and traveled towards the Valle del Leone. Within a few hours explosive activity again increased at NSEC; ash emissions occasionally rose from the Northeast Crater (NEC) and Bocca Nuova Crater. Explosive activity decreased and had ceased by noon. A sudden increase in explosive activity was recorded that afternoon and by the evening three vents within NSEC were producing Strombolian activity and sporadic ash emissions. Ashfall was reported in areas on the S flank. Explosive activity at NSEC again declined in the late evening. NEC produced abundant ash emissions until the morning of 20 July.

Just before 0800 on 20 July a new phase of explosive activity began at NSEC and lava effusion at the new vent on the NE flank increased. Later that morning explosive activity completely ceased; by evening the lava flow was only weakly fed.

Geological summary: Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank. This volcano is located within the Mount Etna, a UNESCO World Heritage property.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Elevation 1513 m

KVERT reported that ash plumes from Karymsky drifted 60 km in multiple directions during 13-17 July. A thermal anomaly was identified in satellite images during 14 and 16-18 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that a weak thermal anomaly over Klyuchevskoy was visible in satellite images on 15 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. This volcano is located within the Volcanoes of Kamchatka, a UNESCO World Heritage property.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Elevation 2910 m

PVMBG reported that during 15-21 July the lava-dome volume at Merapi did not change and was an estimated 475,000 cubic meters, based on analyses of drone images. Extruded lava fell into the upper parts of the SE-flank, generating three block-and-ash flows that traveled 1.2 km down the Gendol drainage on 21 July. White plumes rose as high as 50 m above the summit. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 3-km exclusion zone.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Pacaya, Guatemala

14.382°N, 90.601°W, Elevation 2569 m

INSIVUMEH reported that during 17-23 July Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 25 m above the crater rim. As many as four lava flows traveled down the NW and N flanks; two of the flows were 300 m long. Minor avalanches of material from the lava flow fronts descended the flanks.

Geological summary: Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Sangeang Api, Indonesia

8.2°S, 119.07°E, Elevation 1949 m

The Darwin VAAC reported that during 17-18 and 20-22 July ash plumes from Sangeang Api were identified by pilots and in satellite images rising to 2.1-4.6 km (7,000-15,000 ft) a.s.l. and drifting NW, W, and SW. The Alert Level remained at 2 (on a scale of 1-4).

Geological summary: Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, 1949-m-high Doro Api and 1795-m-high Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly over Sheveluch’s lava dome was identified daily in satellite images during 13-18 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Tengger Caldera, Eastern Java (Indonesia)

7.942°S, 112.95°E, Elevation 2329 m

PVMBG reported that rain triggered a lahar at 1700 on 19 July that originated on the SW flank of Tengger Caldera’s Bromo cone. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay outside of a 1-km radius of the crater.

Geological summary: The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes. This volcano is located within the Bromo Tengger Semeru-Arjuno, a UNESCO Biosphere Reserve property.

Villarrica, Chile

39.42°S, 71.93°W, Elevation 2847 m

POVI reported a high level of incandescence from Villarrica’s summit crater on 22 July and lava bombs on the flanks just below the crater rim. Strombolian explosions intensified on 23 July, with material continuing to be ejected onto the flanks.

Geological summary: ​Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *