The Weekly Volcanic Activity Report: December 5 – 11, 2018

the-weekly-volcanic-activity-report-december-5-11-2018

New activity/unrest was reported for 2 volcanoes between December 5 and 11, 2018. During the same period, ongoing activity was reported for 14 volcanoes. 

New activity/unrest: Manam, Papua New Guinea | Mayon, Luzon (Philippines).

Ongoing activity: Aira, Kyushu (Japan) | Copahue, Central Chile-Argentina border | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Etna, Sicily (Italy) | Ibu, Halmahera (Indonesia) | Kilauea, Hawaiian Islands (USA) | Krakatau, Indonesia | Merapi, Central Java (Indonesia) | Nevados de Chillan, Chile | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Turrialba, Costa Rica | Veniaminof, United States.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, notices of volcanic activity posted are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

New activity/unrest

Manam, Papua New Guinea

4.08°S, 145.037°E, Summit elev. 1807 m

The Darwin VAAC reported that on 6 December ash plumes from Manam were identified in satellite images rising to an altitude of 5.2 km (17,000 ft) a.s.l. and drifting SE. RVO noted that at 1215 on 8 December seismicity increased and indicated an eruption had begun, according to a news article. The eruption was characterized by forceful ash emissions, explosions that ejected lava fragments above the crater, and rumbling and roaring noises. Around 1300, based on pilot observations, information from RVO, and satellite images, large ash plumes rose as high as 15.2 km (50,000 ft) a.s.l and drifted E. Island reports noted that ejections of material ceased around 1900; audible noises ended around 1930. Satellite data indicated that ash from the high-altitude plume had begun to dissipate by 2020, and that on-going ash emissions rose to 8.2 km (27,000 ft) a.s.l. Island residents described heavy ashfall and that the sun was blocked by airborne ash, based on second-hand social media posts. News reports indicated that residents in Bokure and Kolang (NE and ENE flanks, respectively) had evacuated. Seismicity had declined by the end of the day. Dark ash plumes continued to be visible the next day, rising as high as 7.6 km (25,000 ft) a.s.l. and drifting E, though were less frequent.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Mayon, Luzon (Philippines)

13.257°N, 123.685°E, Summit elev. 2462 m

PHIVOLCS reported that during 5-11 December white steam plumes periodically emitted from Mayon drifted mainly WSW. Crater incandescence was sometimes visible at night. A four-minute long event recorded by the seismic network began at 1224 on 9 December, and produced a grayish-brown ash plume that drifted W. The Alert Level remained at 2 (on a 0-5 scale) and PHIVOLCS reminded residents to stay away from the 6-km-radius Permanent Danger Zone and the 7-km Extended Danger Zone on the SSW and ENE flanks.

Geological summary: Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that at least two events at Minamidake crater (at Aira Caldera’s Sakurajima volcano) were recorded during 3-10 December, producing plumes that rose as high as 1.1 km above the crater rim. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Copahue, Central Chile-Argentina border

37.856°S, 71.183°W, Summit elev. 2953 m

The Buenos Aires VAAC reported that on 6 December a pilot observed ash from Copahue at an altitude of 3 km (10,000 ft) a.s.l. Ash was not visible in satellite data and could not be confirmed by unavailable webcams. An ash emission observed by a pilot and identified in satellite images on 7 December rose to 3 km (10,000 ft) a.s.l. and drifted SW.

Geological summary: Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite data, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 4-11 December ash plumes from Dukono rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted mainly W, SW, and SE. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 30 November-7 December that sent ash plumes to 3.6 km (11,800 ft) a.s.l. Ash plumes drifted E, causing ashfall in Severo-Kurilsk on 30 November, and 1 and 4 December. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Etna, Sicily (Italy)

37.748°N, 14.999°E, Summit elev. 3295 m

INGV reported that during 3-9 December activity at Etna was characterized by gas emissions at the summit craters, with periodic Strombolian activity from vents in Bocca Nuova, Northeast Crater (NEC), and New Southeast Crater (NSEC). Strombolian explosions at the cone in NSEC became more frequent on 4 December. In addition, lava effusion became continuous with small overlapping flows traveling about 500 m down the E flank of the cone. Incandescent blocks generated by the lava flows rolled to the base of the cone, and occasional small collapses produced minor ash plumes. Strombolian activity and occasional ash emissions were characteristic of vents in the W part of Bocca Nuova’s (BN-1) crater floor. Gas emissions at Voragine Crater continued from a vent on the E rim of the crater, and Strombolian explosions were evident at NEC.

Geological summary: Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

PVMBG reported that on 11 December an ash plume from Ibu rose to 1.8 km (6,000 ft) a.s.l., according to the Darwin VAAC. Weather clouds prevented views of the plume in satellite data. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Summit elev. 1222 m

HVO reported that lava at Kilauea’s Fissure 8 cone was last visible on 4 September, signaling the end of the Lower East Rift Zone (LERZ) eruptive phase. Consequently, the end of the LERZ eruption also marks the end of the over-arching, on-going eruption at Kilauea that began at the East Rift Zone (ERZ) in 1983. That determination was made by HVO in part by using the Global Volcanism Program guideline that an eruption should be considered over on the date of the last eruptive activity, and when there has not been renewed activity in the following three months.

HVO noted that geophysical data continued to show magma being supplied to Kilauea, including the refilling of the middle ERZ, and reminded the public that Kilauea remains an active volcano. As of 4 December the Volcano Alert Level remained at Advisory and the Aviation Color Code remained at Yellow.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Krakatau, Indonesia

6.102°S, 105.423°E, Summit elev. 813 m

PVMBG reported that events at Anak Krakatau were recorded at 0711 on 7 December, at 1050 on 9 December, and 1413 on 10 December. The event on 9 December generated a dense black ash plume that rose 700 m above the summit and drifted N.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

PVMBG reported that during 30 November-6 December the lava dome in Merapi’s summit crater grew at a rate of 2,200 cubic meters per day. By 6 December the volume of the dome, based on photos taken from the SE, was an estimated 344,000 cubic meters. White emissions of variable density rose a maximum of 150 m above the summit. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 3-km exclusion zone.

Geological summary: Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Nevados de Chillan, Chile

36.868°S, 71.378°W, Summit elev. 3180 m

ONEMI and SERNAGEOMIN reported that at 0313 on 7 December an explosion at Nevados de Chillán was recorded by the seismic network, and produced a high-temperature emission of gas and tephra recorded by a webcam. The Alert Level remained at Orange, the second highest level on a four-color scale, and residents were reminded not to approach the crater within 3 km. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the communities of Pinto, Coihueco, and San Fabián.

Geological summary: The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Sabancaya, Peru

15.787°S, 71.857°W, Summit elev. 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that an average of 17 explosions per day occurred at Sabancaya during 3-9 December. Long-period seismic events were recorded, and hybrid earthquakes were infrequent and of low magnitude. Gas-and-ash plumes rose as high as 3 km above the crater rim and drifted 40 km E and SW. MIROVA detected seven thermal anomalies, and on 6 December the sulfur-dioxide gas flux was high at 3,600 tons per day. The report noted that the public should not approach the crater within a 12-km radius.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images on 30 November, 1 December, and 3-4 December. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Turrialba, Costa Rica

10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported continuing activity at Turrialba during 5-11 December. A minor emission from the vent was visible on 5 December, and an ash emission drifted S the next day. An event at 0749 on 8 December produced an ash plume that rose 500 m and drifted NW. Emissions of ash, steam, and gas rose as high as 1 km on 9 December and caused ashfall in areas of Valle Central. On 10 December diffuse emissions were periodically observed during periods of clear viewing. That same day ash fell in Moravia (31 km WSW) and Santa Ana, and residents of Heredia (38 km W) noted a sulfur odor.

Geological summary: Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Veniaminof, United States

56.17°N, 159.38°W, Summit elev. 2507 m

AVO reported that on 2 December satellite data revealed that a third lobe of lava from the cone in Veniaminof’s ice-filled summit caldera had traveled a short distance down the SE flank of the cone. All three lobes produced sometimes voluminous steam plumes due to their interaction with the ice and snow. The eruption of lava continued during 4-5 December. Satellite and webcam data showed elevated surface temperatures. Steam plumes with possible diffuse ash were periodically identified in webcam and satellite images. On 6 December seismicity changed from nearly continuous, low-level volcanic tremor to intermittent, small, low-frequency events and short bursts of tremor, possibly indicating that lava effusion had slowed or stopped. Variable seismicity continued through 12 December, though there was no visual confirmation of lava effusion. The Aviation Color Code remained at Orange (the second highest level on a four-color scale) and the Volcano Alert Level remained at Watch (the second highest level on a four-level scale).

Geological summary: Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *