Active volcanoes in the world: March 8 – 14, 2017

active-volcanoes-in-the-world-march-8-14-2017

New activity/unrest was reported for 3 volcanoes between March 8 and 14, 2017. During the same period, ongoing activity was reported for 14 volcanoes.

New activity/unrest:  Chirinkotan, Kuril Islands (Russia) | Ebulobo, Flores Island (Indonesia), Klyuchevskoy, Central Kamchatka (Russia).

Ongoing activity: Bagana, Bougainville (Papua New Guinea) | Bezymianny, Central Kamchatka (Russia) | Bogoslof, Fox Islands (USA) | Cleveland, Chuginadak Island (USA) | Colima, Mexico | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia), Fuego, Guatemala | Kilauea, Hawaiian Islands (USA) | Nevados de Chillan, Chile | Popocatepetl, Mexico | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Sinabung, Indonesia.

New activity/unrest

Chirinkotan, Kuril Islands (Russia)

48.98°N, 153.48°E, Elevation 724 m

SVERT noted that no further activity at Chirinkotan was visible after the ash emission on 1 March. The Aviation Color Code was lowered to Green (on a four-color scale) on 5 March.

Geological summary: The small, mostly unvegetated 3-km-wide island of Chirinkotan occupies the far end of an E-W-trending volcanic chain that extends nearly 50 km west of the central part of the main Kuril Islands arc. Chirinkotan is the emergent summit of a volcano that rises 3000 m from the floor of the Kuril Basin. A small 1-km-wide caldera about 300-400 m deep is open to the SE. Lava flows from a cone within the breached crater reached the north shore of the island. Historical eruptions have been recorded at Chirinkotan since the 18th century. Fresh lava flows also descended the SE flank of Chirinkotan during an eruption in the 1880s that was observed by the English fur trader Captain Snow.

Ebulobo, Flores Island (Indonesia)

8.82°S, 121.18°E, Elevation 2124 m

Based on PVMBG observations, the Darwin VAAC reported that on 12 March an ash plume from Ebulobo rose to an altitude of 3 km (10,000 ft) a.s.l. (800 m above the summit) and drifted W.

Geological summary: Ebulobo, also referred to as Amburombu or Keo Peak, is a symmetrical stratovolcano in central Flores Island. The summit of 2124-m-high Gunung Ebulobo cosists of a flat-topped lava dome. The 250-m-wide summit crater of the steep-sided volcano is breached on three sides. The Watu Keli lava flow traveled from the northern breach to 4 km from the summit in 1830, the first of only four recorded historical eruptions of the volcano.

Klyuchevskoy, Central Kamchatka (Russia)

56.056°N, 160.642°E, Elevation 4754 m

KVERT reported that a thermal anomaly over Klyuchevskoy was identified in satellite data during 2-3, 5, and 8-9 March. Explosions on 8 March produced ash plumes that rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted about 20 km NW. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Ongoing activity

Bagana, Bougainville (Papua New Guinea)

6.137°S, 155.196°E, Elevation 1855 m

Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 14 March a minor ash emission from Bagana rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted WSW.

Geological summary: Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported that an explosive eruption at Bezymianny began at about 1330 on 9 March. Based on webcam observations, at 1454 an ash plume rose to altitudes of 6-7 km (20,000-23,000 ft) a.s.l. and drifted 20 km NE. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale). About 30 minutes later, at 1523, an ash plume rose to altitudes of 7-8 km (23,000-26,200 ft) a.s.l. and drifted 60 km NW. KVERT raised the Aviation Color Code to Red. Satellite data showed a 14-km-wide ash plume drifting 112 km NW at an altitude of 7 km (23,000 ft) a.s.l. Later that day a 274-km-long ash plume identified in satellite images drifted NW at altitudes of 4-4.5 km (13,100-14,800 ft) a.s.l.; the majority of the leading part of the plume contained a significant amount of ash. A lava flow traveled down the NW part of the lava dome. The Aviation Color Code was lowered to Orange. Ash plumes drifted as far as 500 km NW.

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Bogoslof, Fox Islands (USA)

53.93°N, 168.03°W, Elevation 150 m

AVO reported that an explosive event at Bogoslof began at about 2236 on 7 March, indicated in seismic, lightning, and infrasound data, and lasted about three hours. Though ash was not immediately visible in satellite data, AVO raised the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Later, satellite images showed a large ash cloud rising to an altitude of 10.7 km (35,000 ft) a.s.l. and drifting E. This event was the first detected eruptive activity since 19 February, and more than 1,000 lightning strokes related to the volcanic eruption cloud were detected during this event, by far the highest number observed to date. In addition the seismic levels were among the highest detected since the beginning of the eruption. Satellite images from 8 March showed that the W part of the island had grown significantly. The ACC was lowered to Orange and the VAL was lowered to Watch on 9 March. 

Two earthquakes swarms were detected during 9-11 March; the first began at 1750 on 9 March and ended at 1400 on 10 March, and the second was detected from 1900 on 10 March to 0500 on 11 March. Mildly elevated surface temperatures were identified in satellite data during 10-11 March. A third swarm began at 0500 on 12 March. A short-duration event, from 1131 to 1143 on 13 March, produced a small ash cloud that rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted SSW. AVO noted that after the event, the level of seismic activity declined and the repeating earthquakes, detected for much of the previous several days, stopped. Weakly elevated surface temperatures were observed in two satellite images from 13 March. A photograph taken by a pilot showed a low-level, billowy steam plume rising from the general area of the intra-island lake.

Geological summary: Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Elevation 1730 m

On 8 March AVO reported that satellite data collected over the previous few weeks did not indicate any growth of Cleveland's lava dome that was emplaced sometime in late January; weakly elevated surface temperatures detected in satellite data were consistent with cooling lava and not indicative of new activity. The Aviation Color Code was lowered to Yellow and the Volcano Alert Level was lowered to Advisory.

Geological summary: Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Colima, Mexico

19.514°N, 103.62°W, Elevation 3850 m

Based on Centro Universitario de Estudios e Investigaciones de Vulcanologia – Universidad de Colima observations, the Unidad Estatal de Protección Civil de Colima reported that during 3-9 March there were six low-intensity explosions at Colima. At 1823 on 7 March an ash plume rose about 2 km above the crater and drifted SW. The report noted that the public should not enter the 8-km-radius exclusion zone.

Geological summary: The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 8 and 10-14 March ash plumes from Dukono rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted in multiple directions.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

KVERT reported that during 3-10 March there were 15 explosions at Ebeko observed by residents of Severo-Kurilsk (Paramushir Island) about 7 km E. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: 

Fuego, Guatemala

14.473°N, 90.88°W, Elevation 3763 m

INSIVUMEH reported that six explosions and weak shockwaves were detected at Fuego on 9 March. Ash plumes rose 900 m and drifted S and SW. Ashfall was reported in Panimaché I and II (8 km SW), Morelia (9 km SW), and Santa Cecilia. Avalanches of material traveled towards the Santa Teresa (W), Trinidad (S), and Las Lajas (SE) drainages. The number and intensity of explosions increased on 10 March. Ash plumes rose as high as 2.7 km and drifted more than 10 km W and SW. Ash fell in areas downwind including Panimaché I and II, Morelia, Santa Sofía (12 km SW), Finca Palo Verde, Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km N). During 11-14 March explosions produced ash plumes that rose 0.5-1 km and drifted 8-12 km NW, W, and SW. Ash fell in multiple areas including Panimaché I and II, Morelia, and Santa Sofía. Incandescent material was ejected as high as 200 m above the crater rim.

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

During 8-14 March HVO reported that the lava lake continued to rise and fall, circulate, and spatter in Kilauea’s Overlook vent. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater, from a vent high on the NE flank of the cone, and from a small lava pond in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Surface lava flows were active on the coastal plain, and on and above the pali.

Geological summary: Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Nevados de Chillan, Chile

36.863°S, 71.377°W, Elevation 3212 m

OVDAS-SERNAGEOMIN reported that the number of phreatomagmatic explosions at Nevados de Chillán increased on 7 March, after a month and a half of no explosive activity. Explosions from the craters on the E side of Volcán Nuevo and the Volcán Arrau dome complex produced plumes that rose 300 m on 7 March, and then subsequently seismicity and surficial activity gradually increased. On 11 March there were eight explosions detected. Plumes rose as high as 500 m and incandescent material was ejected 500 m away from the craters. A series of eight explosions beginning at 0617 on 16 March generated ash plumes that rose 1.5 km and again ejected incandescent material. The Alert Level remained at Yellow, the middle level on a three-color scale, and the public was reminded not to approach the craters within a 3-km radius.

Geological summary: The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Popocatepetl, Mexico

19.023°N, 98.622°W, Elevation 5426 m

Each day during 8-14 March CENAPRED reported 87-200 steam and gas emissions from Popocatépetl, and crater incandescence on most nights. Weather clouds often prevented visual observations. Explosions were detected during 8-11 March: at 0809 on 8 March, at 1847 on 9 March, at 0539 on 10 March, and at 0435 on 11 March. Two additional explosions on 11 March, at 1347 and 1842, generated ash plumes that rose less than 2 km above the crater rim and drifted ENE. The Alert Level remained at Yellow, Phase Two.

Geological summary: Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5426 m 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major plinian eruptions, the most recent of which took place about 800 CE, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since pre-Columbian time.

Sabancaya, Peru

15.78°S, 71.85°W, Elevation 5967 m

Based on webcam images, satellite views, and seismic data the Buenos Aires VAAC reported that during 8-14 March sporadic gas-and-ash puffs rose from Sabancaya. Weather clouds often hindered observations of the volcano. On 9 March ash plumes rose to an altitude of 11 km (36,000 ft) a.s.l. and drifted NW and SW. Ash plumes rose to an altitude of 6.7 km (22,000 ft) a.s.l. on 12 March.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that during 3-10 March lava-dome extrusion onto Sheveluch’s N flank was accompanied by strong fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images showed a daily thermal anomaly over the dome, and ash plumes that drifted NW 5 and 8-9 March. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary:  The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300  cu  km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava domecomplex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Sinabung, Indonesia

3.17°N, 98.392°E, Elevation 2460 m

Based on PVMBG observations, satellite data, webcam images, and wind data, the Darwin VAAC reported that during 8-14 March ash plumes from Sinabung rose to altitudes of 3-5.2 km (10,000-17,000 ft) a.s.l. and drifted NW, W, SW, and S.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Source: GVP

Share:

Commenting rules and guidelines

We value the thoughts and opinions of our readers and welcome healthy discussions on our website. In order to maintain a respectful and positive community, we ask that all commenters follow these rules:

  • Treat others with kindness and respect.
  • Stay on topic and contribute to the conversation in a meaningful way.
  • Do not use abusive or hateful language.
  • Do not spam or promote unrelated products or services.
  • Do not post any personal information or content that is illegal, obscene, or otherwise inappropriate.

We reserve the right to remove any comments that violate these rules. By commenting on our website, you agree to abide by these guidelines. Thank you for helping to create a positive and welcoming environment for all.

Leave a reply

Your email address will not be published. Required fields are marked *